Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Kẻ BE,CF vuông góc với AM.
Ta có:
MA.BC = MA.(BP+CP) ≥ MA.(BE+CF) = 2 SABM + 2 SCAM
Tuong tu:
MB.CA ≥ 2SBCM + 2 SABM
MC.AB ≥ 2SCAM + 2 SBCM
Suy ra:
MA.BC + MB.CA + MC.AB ≥ 2 ( 2 SABM + 2SBCM + 2SCAM) = 4SABC
dpcm.
Dấu = xảy ra khi M là trực tâm.
Áp dụng bất đẳng thức cosi cho 4 số ta có
\(\frac{AP^4}{BP^3}+BP+BP+BP\ge4AP\)
Mà \(AP=\frac{b+c-a}{2},BP=\frac{a+c-b}{2}\)
=> \(\frac{AP^4}{BP^3}\ge\frac{7b-7a+c}{2}\)
CMTT \(\frac{BM^4}{CM^3}\ge\frac{7c-7b+a}{2}\)
\(\frac{CN^4}{AN^3}\ge\frac{7a-7c+b}{2}\)
Khi đó
\(VT\ge\frac{a+b+c}{2}=P\)
Dấu bằng xảy ra khi a=b=c
=> tam giác ABC đều
A=B=C=60
A B C C, G M B, C, H D
TA CÓ
\(\frac{MC,}{GC,}=\frac{S\Delta AMB}{S\Delta AGB}\left(1\right)\)
\(\frac{MB,}{GB,}=\frac{S\Delta AMC}{S\Delta AGC}\left(2\right)\)
DỰNG GH VÀ MD VUÔNG GÓC VỚI BC
AD ĐỊNH LÍ TA LÉT
=>\(\frac{MD}{GH}=\frac{MA,}{GA,}\)
MẶT KHÁC \(\frac{MD}{GH}=\frac{S\Delta BMC}{S\Delta BGC}\)
=> \(\frac{MA,}{GA,}=\frac{S\Delta BMC}{S\Delta BGC}\left(3\right)\)
TỪ 1 ,2,3
=> \(\frac{MA,}{GA,}+\frac{MB,}{GB,}+\frac{MC,}{GC,}=\frac{S\Delta AMB+S\Delta BMC+S\Delta AMC}{\frac{1}{3}S\Delta ABC}=\frac{3SABC}{SABC}=3\)
Đề sai bết số z