K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

Giải:

Thứ tự sắp xếp là: 5, 1, 2, 4, 3.

2 tháng 11 2016

Xét tam giác ABM và tam giác MCE có

- BM = MC (Vì M là trung điểm BC)

-ME = MA ( giả thiết )

- góc BMA = góc CME (đối đỉnh)

Vậy tam giác ABM = tam giác MCE

=> góc BAM = góc CEM

=> AB//CE

23 tháng 11 2016

Xét Δ ABM và Δ ECM có:

ME=MA ( theo giả thiết )

góc BMA= góc CME (đối đỉnh )

BM=CM ( do M là trung điểm của BC )

→ Δ ABM=Δ ECM ( C-G-C)

góc BAM= góc CEM

Mà 2 góc này ở vị trí so le trong nên AB //CE.

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc...
Đọc tiếp

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.

Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.

Bài 3: Cho  ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b)  DBC =  BDE

Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.

Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD  BC

Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a)  ABM =  DCM. b) AB // DC. c) AM  BC

Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.

Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.

Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?

Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.

11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN

2
18 tháng 3 2020
làm đc câu nào thì làm
20 tháng 8 2021

tự nghĩ đi

29 tháng 12 2019

Bạn tự vẽ hình nhé !

Xét \(\Delta AMB\)và \(\Delta ECM\)có: 

\(MA=ME\left(gt\right)\)

\(MB=MC\)( vì M là trung điểm BC )

\(\widehat{BMA}=\widehat{EMC}\)( 2 góc đối đỉnh )

\(\Rightarrow\Delta AMB=\Delta ECM\left(c.g.c\right)\)

Vì \(\Delta AMB=\Delta ECM\left(cmt\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{MEC}\)( 2 góc tưởng ứng )

Mà 2 góc này ở vị trí so le trong 

\(\Rightarrow AB//CE\)

\(\text{a) xét tam giác AMB và tam giác EMC}\)

\(\text{có : MB=MC( M là trung điểm của BC)}\)

\(\text{góc AMB=góc EMC( đ đ)}\)

\(\text{AM=EM(gt)}\)

=> tam giác AMB=tam giác EMC(c-g-c)

\(\text{b) xét tam giác AMB và tam giác CME}\)

\(\text{có: AM=EM(gt)}\)

\(\text{góc AMB=góc CME (đ đ)}\)

\(\text{MB=MC(M là trung điểm của BC)}\)

=> tam giác AMB=tam giác CME(c-g-c)

=> góc CAM= góc MEC ( 2 góc tương ứng)

\(\text{mà 2 góc này ở vị trí so le trong}\)

=> AC=CE ( 2 cạnh tương ứng)

1 tháng 5 2020

A B C H M F E I K

, M là trung điểm của BC ⇒ MB = MC

Xét ΔMBA và ΔMCE có:

MB = MC

\(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)

MA = ME

=> ΔMBA = ΔMCE (c.g.c) (đpcm)

b, Xét 2 tam giác vuông ΔBHA và ΔBHF có:

BH chung; \(\widehat{ABH}=\widehat{FBH}\) (do góc ABx nhận BC là tia phân giác)

 => ΔBHA = ΔBHF (cạnh góc vuông - góc nhọn)

=>  AB = BF mà AB = CE (do ΔMBA = ΔMCE)

=> CE = BF (đpcm)

c, Ta thấy: \(\widehat{FBC}=\widehat{ABC}=\widehat{ECB}\)

 => ΔKBC cân tại K mà KM là trung tuyến

=>  KM là phân giác của \(\widehat{BKC}\) (1)

ΔKBC cân tại K ⇒ KB = KC mà BF = CE
⇒ KB - BF = KC - CE ⇒ KF = KE

Ta chứng minh được ΔBEK = ΔCFK (c.g.c)

=> \(\widehat{EBK}=\widehat{FCK}\)

=.> ΔBIF = ΔCIE (g.c.g)

=> IF = IE ⇒ ΔIFK = ΔIEK (c.c.c)

 \(\Rightarrow\widehat{IKF}=\widehat{IKF}\)

⇒ KI là phân giác của ^BKC (2)

Từ (1) và (2) suy ra M, I, K thẳng hàng (đpcm)

30 tháng 12 2021
Not giải dc

a/ Trong TG ABC : AB2=BC2-AC2 (đ/l Pytago đảo)

AB2=102-82=62

=> TG ABC là TG vuông .

 

b: Xét tứ giác ABEC có 

M là trung điểm của AE

M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

22 tháng 4 2022

A B C D E

GT KL tam giác ABC vuông tại A CA = CD CE = CB a, tam giác ABC = tam giác DEC b, tính góc CDE = 90 độ c. tính cạnh AB

a, Xét △ABC và △DCE có

AC = CD

C^ đối đỉnh

BC = CE

=> △ABC = △DCE

b, VÌ △ABC = △DCE nên góc BAC = góc CDE 

=> CDE = 90 độ

c, Vì BE = BC + CE = 20

Mà BC = CE = \(\dfrac{BC}{2}\) = \(\dfrac{20}{2}\) = 10

Vì AD = AC + CD = 16

Mà AC = CD = \(\dfrac{AD}{2}\) = \(\dfrac{16}{2}\) = 8

Áp dụng định lý Pytago 

ta có : \(BC^2=AB^2+AC^2\)

          \(10^2=AB^2+8^2\)

          \(100=AB^2+64\)

          \(AB^2=100-64=36\)

   Vậy \(AB=6^2\)

Mong bạn tick cho mik :))

Thanks bn nhiều nha :333

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE