Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này bạn tự kẻ hình giúp mình nha!
1. Xét tam giác AMB và tam giác CMD có:
AM = CM ( M là trung điểm của AC )
AMB = CMD ( 2 góc đối đỉnh )
BM = DM (gt)
=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)
=> BAM = DCM ( 2 góc tương ứng)
=> DCM = 90o => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )
2.
Xét tam giác AMD và tam giác CMB có:
AM = CM ( Theo 1.)
AMD = CMB ( 2 góc đối đỉnh )
DM = BM (gt)
=> tam giác AMD = tam giác CMB ( c.g.c)
=> AD = BC (2 cạnh tương ứng) (dpcm)
=> ADM = CBM (2 góc tương ứng)
Mà góc ADM và và góc CBM ở vị trí so le trong
=> AD // BC (dpcm)
3. Xét tam giác AEN và tam giác BCN có:
AN=BN ( N là trung điểm của AB)
ANE = BNC ( 2 góc đối đỉnh )
NE = NC (gt)
=> Tam giác AEN = tam giác BCN ( c.g.c)
=> AE = BC ( 2 cạnh tương ứng ) (1)
=> EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC (2)
Theo 2. ta có : +) AD=BC (3)
+) AD // BC (4)
Từ (1) và (3) Suy ra AE = AD (5)
Từ (2) và (4) Suy ra A,E,D thẳng hàng (6)
Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác ABCD có
M la trung điểm của AC
M là trung điểm của BD
DO đó: ABCD là hình bình hành
Suy ra: AB//CD và AB=CD
a, Xét \(\Delta\)AMB và \(\Delta\)CMD
MB = MD (gt)
^AMB = ^CMD (đối đỉnh)
AM = CM (gt)
=> \(\Delta\)AMB = \(\Delta\)CMD (c.g.c)
b, Vì \(\Delta\)AMB = \(\Delta\)CMD
=> ^BAM = ^DCM ( 2 góc tương ứng )
Vậy : AB = CD và AB//CD
a/
Xét tam giác AMB và tam giác CMD, có:
MA=MC (gt)
MB=MD (gt)
\(\widehat{AMB}=\widehat{CMD}\)(đđ)
Do đó: tam giác AMB=tam giác CMD (cgc)
b/
Vì tam giác AMB=tam giac CMD (cmt) nên AB=CD
Và \(\widehat{BAM}=\widehat{MCD}\)
Mà chúng ở vị trí so le trong
Vậy AB//CD
a, Xét \(\Delta AMB\)và \(\Delta CMD\)có :
\(AM=MC\left(gt\right)\)
\(MB=MD\left(gt\right)\)
\(\widehat{M_1}=\widehat{M_3}\)( đối đỉnh )
\(\Rightarrow\Delta AMB=\Delta CMD\left(c.g.c\right)\)
b, Từ câu a, \(\Delta AMB=\Delta CMD\)
\(\Rightarrow\widehat{A_1}=\widehat{C_2}\)( 2 góc tương ứng )
Đt AC bị hai đường thẳng AB và CD cắt tạo thành \(\widehat{A_1}=\widehat{C_2}\)( 2 góc sl trong ) bằng nhau
=> AB // CD ( đpcm )
c, Xét \(\Delta DMA\)và \(\Delta BMC\)có :
\(MA=MC\left(gt\right)\)
\(MB=MD\left(gt\right)\)
\(\widehat{M_2}=\widehat{M_4}\)
\(\Rightarrow\Delta BMC=\Delta DMA\)
= > AD = BC
d, Từ câu b, \(\Delta DMA=\Delta BMC\)
\(\Rightarrow\widehat{A_2}=\widehat{C_1}\)( 2 góc t/ư )
Đt CA bị 2 đường thẳng AD và BC cắt tạo thành \(\widehat{A_2}=\widehat{C_1}\)( 2 góc sl trong ) bằng nhau
= > AD // BC ( đpcm )