K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

Gọi I là giao điểm của BC và MD

Vì MBDC là hình bình hành 

\(\Rightarrow IB=IC\)

Gọi K là giao điểm của AD và ME

Vì MAED là hình bình hành 

\(\Rightarrow KD=KA\)

Xét \(\Delta AMD\)có MK và AI là các đường trung tuyến

=> G là trọng tâm của \(\Delta AMD\)( G là giao điểm của MK và AI )

\(\Rightarrow GI=\frac{1}{3}AI\)

=> AI là đường trung tuyến của tam giác ABC 

Mà \(GI=\frac{1}{3}AI\)

Nên G là trong tâm của tam giác ABC

=> G là điểm cố định

Vậy khi M di động thì đương thẳng ME luôn đi qua  điểm G cố định

17 tháng 10 2020

A B C M D E I G K

17 tháng 10 2020

Gọi I là tâm hình bình hành MBDC, J là tâm hình bình hành MAED. G là giao điểm của AI và EM

Tứ giác MBDC là hình bình hành nên BI = IC và MI = ID

Tứ giác MAED là hình bình hành nên AJ = JD 

∆AMD có AI và MJ là hai đường trung tuyến cắt nhau tại G nên G là trọng tâm của ∆AMD => AG = 2/3AI

∆ABC có AI là đường trung tuyến và AG = 2/3AI nên G là trọng tâm của ∆ABC => G là điểm cố định

Vậy đường thẳng ME luôn đi qua một điểm cố định G (đpcm)

29 tháng 6 2021

A B C M N I D E J

Gọi J là trung điểm cạnh BC, MN cắt AJ tại I.

Vì MADB và MAEC là các hình bình hành nên \(BD=MA=CE,BD||MA||CE\)

Suy ra BDEC là hình bình hành, suy ra N là trung điểm BE. Do đó NJ là đường trung bình \(\Delta BEC\)

Suy ra \(NJ||CE||AM,NJ=\frac{1}{2}CE=\frac{1}{2}AM\)

Theo định lí Thales \(\frac{IJ}{IA}=\frac{NJ}{MA}=\frac{1}{2}\). Vì AJ là trung tuyến của \(\Delta ABC\) nên I là trọng tâm \(\Delta ABC\)

Vậy MN đi qua I cố định.

21 tháng 9 2017

bạn ghi mỗi bài 1 câu hỏi đi mà bạn làm thế này dài lắm

21 tháng 9 2017

Mình tách 3 bài riêng rồi đấy. Bạn có thể giúp mình làm 1 trong 3 bài ko hoặc cả 3 cũng đc

2 tháng 8 2016

A B C D M N I K

nối BD và AC

trong tam giác ABC ta có: M và N lần luợt là trung đỉêm của AB và AC

=> MN là đuờng trung bình của tam giác ABC

=> MN//AC(

trong tam giác ADC ta có I và K lần luợt là trung điểm của DC và DA

=> KI là đuờng trung bình của tam giác ADC

=> KI//AC

ta có: KI//AC

        MN//AC

=> KI//MN(1)

trong tam giác ABD có M và K lần luợt là trung điểm của AB và AD

=> MK là đuờng trung bình của tam giác ADB 

=> MK//DB

trong tam giác CDB có I và N lần luợt là trung điểm của DC và CB

=> IN là đuờng trung bình của tam, giác CDB

=>IN//BD

ta có: MK//DB

         IN//DB

=> MK//IN(2)

từ (1)(2)=> MK//IN

                  MN//KI

=> MNIK là hình bình hành

2 tháng 8 2016

Bài 1:Vẽ đường chéo BD
Xét tam giác ADB có:
M là trung điểm của AB
K là trung điểm của AD
=>KM là đường trung bình của tam giác ADB
=>KM//DB(1) và KM=1/2 DB(3)
Xét tam giác BCD có:
N là trung điểm của BC
I là trung điểm của DC
=>NI là đường trung bình của tam giác BCD
=>NI//DB(2) và NI=1/2DB(4)
Từ (1) và (2)=>KM//NI( //DB)(5)
Từ (3) và (4)=>KM=NI(=1/2 DB)(6)
Từ (5)  và (6)=>KMNI là hình bình hành (dhnb3)