Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có GH = GA (cùng bằng 2GD) nên điểm đối xứng với A qua G là H. Tương tự, ta có điểm đối xứng với B qua G là I và điểm đối xứng với C qua G là K
*) Tam giác ABC có ba đường trung tuyến AD, BE, CF cắt nhau tại G nên G là trọng tâm tam giác ABC.
* Ta có: GD = DH (tính chất đối xứng tâm)
⇒ GH = 2GD (l)
GA = 2GD (tính chất đường trung tuyến của tam giác) (2)
Từ (1) và (2) suy ra: GA = GH
Suy ra điểm đối xứng với điểm A qua G là H.
* Ta có: GE = EI (tính chất đối xứng tâm)
⇒ GI = 2GE (3)
Lại có, GB = 2GE (tính chất đường trung tuyến của tam giác) (4)
Từ (3) và (4) suy ra: GB = GI
Suy ra điểm đối xứng với điểm B qua G là I.
+) Ta có: GF = FK (tính chất đối xứng tâm)
⇒ GK = 2GF (5)
GC = 2GF (tính chất đường trung tuyến của tam giác) (6)
Từ (5) và (6) suy ra: GC = GK
Suy ra điểm đối xứng với điểm C qua G là điểm K
a) E đối xứng với D qua AB=> AD=AE và \(\widehat{A_1}=\widehat{A_2}\)
F đối xứng với D qua AC=> AD=AF và \(\widehat{A_3}=\widehat{A_4}\)
\(\Rightarrow AE=\text{AF}\left(=AD\right),\widehat{DAE}+\widehat{D\text{AF}}=2\left(\widehat{A_1}+\widehat{A_3}\right)=2.90^0=180^0\)=> E,A,F thẳng hàng.
Vậy E đối xứng với F qua A(ĐPCM)
b) Ta có: EF=2AD nên EF nhỏ nhất => AD nhỏ nhất => D là chân đường cao kẻ từ A đến BC
a: Sửa đề: ΔAEB
Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
b: góc HDC+góc HEC=180 độ
=>HDCE nội tiếp
Xét ΔADE và ΔACH có
góc DAE chung
góc ADE=góc ACH
=>ΔADE đồng dạng với ΔACH