Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Có:\(\widehat{AFH}+\widehat{AEH}=90^o+90^o=180^o\)
Vậy AEHF nt.
Có: \(\Delta AEH,\Delta AFH\) là những tam giác vuông nên tâm của (AEHF) là tđiểm của AH
Vậy IA=IH.
b. C/m \(\widehat{GEH}=\widehat{HAE}\) khi đó theo đlí đảo về gnt và g tạo bởi.... thì GE là ttuyến của (I).
c. Có: \(\widehat{FAH}=\widehat{HCB}\)(cùng phụ\(\widehat{AHF}=\widehat{ABC}\)(t/c góc ngoài =góc trong.... do BGHF nt theo tổng 2 góc đối =180o)
mà \(\widehat{FBH}=\widehat{ECH}\)(cùng phụ \(\widehat{FHB}\))
và \(\widehat{HBC}=\widehat{HCB}\)(\(\Delta HBC\) cân tại H do HG là đcao và đttuyến)
\(\Rightarrow\widehat{ECB}=\widehat{HCB}+\widehat{ECH}=\widehat{ABC}=\widehat{AHF}\)
nên \(\Delta_vAHF\sim\Delta_vBCE\left(gn\right)\)
\(\Rightarrow\frac{AH}{AF}=\frac{BC}{BE}\)
\(\Rightarrow AH.BE=AF.BC\left(đpcm\right)\)
Bạn tự vẽ hình nha.
a) Qua A kẻ tiếp tuyến chung trong của (O) và (O') cắt d tại N.
Theo tính chất 2 tiếp tuyến cắt nhau ta có: NA = NB và NA = NC . Do đó NB = NC => NA là trung tuyến của tam giác ABC và \(NA=\frac{1}{2}BC\). Từ đó => tam giác ABC vuông tại A.
b) Theo phần a ta đã chứng minh được N là trung điểm BC thì AN là tiếp tuyến chung của 2 đường tròn => M trùng với N. Vậy AM là tiếp tuyến chung của 2 đường tròn.