K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

thank yoooooooooooouuuuuuuuuuuuuuuuuu

Xét tứ giác BICD có

M là trung điểm chung của BC và ID

=>BICD là hình bình hành

=>CI//BD

=>CI vuông góc AB

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

a) Xét ΔBMD và ΔCME có 

BM=CM(M là trung điểm của BC)

\(\widehat{BMD}=\widehat{CME}\)(hai góc đối đỉnh)

MD=ME(gt)

Do đó: ΔBMD=ΔCME(c-g-c)

b) Ta có: ΔBMD=ΔCME(cmt)

nên BD=CE(hai cạnh tương ứng)

c) Ta có: ΔBMD=ΔCME(cmt)

nên \(\widehat{BDM}=\widehat{CEM}\)(hai góc tương ứng)

mà \(\widehat{BDM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong

nên BD//EC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: BD//EC(cmt)

BD\(\perp\)AB(gt)

Do đó: EC\(\perp\)AB(Định lí 2 từ vuông góc tới song song)

20 tháng 2 2021

cảm ơn nhé bạn

 

19 tháng 11 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Xét ΔBMD và ΔCME có:

BM = MC (vì M là trung điểm BC)

MD = ME (giả thiết)

∠BMD = ∠EMC (hai góc đối đỉnh)

⇒ ΔBMD = ΔCME (c.g.c)

⇒ ∠D = ∠MEC (hai góc t.ư)

Mà hai góc này ở vị trí so le trong nên suy ra BD // CE.

Ta có AB ⊥ BD (giả thiết) và BD // CE (chứng minh trên) nên AB ⊥ CE