K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

a)  Tam giác ABO và tam giác AEO có:

Góc AOB = góc AOE (=90 độ)

Góc BAO = góc EAO (AO là phân giác góc BAE)

Cạnh AO chung

=> tam giác ABO = tam giác AEO (g-c-g)    (1)

b)  Từ (1) => AB = AE => tam giác BAE cân tại A      (2)

c)  Từ (2) => AO là đường cao cũng là trung tuyến của tam giác BAE 

=> AD là đường trung trực của BE

d)  Tam giác BAE có hai đường cao AO và BK cắt nhau tại M nên M là trực tâm.

Gọi H là giao điểm của EM và AB => EH  đi qua trực tâm M nên là đường cao thứ ba của tam giác BAE

=> EM vuông góc AB

mà BC vuông góc AB (gt)

=> EM // BC

14 tháng 1 2019

a)  Xét 2 tgiac vuông: tgiac OAC và tgiac OBC có:

OC: cạnh chung

góc AOC = góc BOC 

suy ra:  tgiac OAC = tgiac OBC  (ch_gn)

=>  AC = BC

b) E ở đâ vậy bạn

c) Áp dụng định lý Pytago vào tam giác vuông OAC ta có:

OA2 + AC2 = OC2

<=> AC2 = OC2 - OA2

<=> AC2 = 132 - 122 = 25

<=> AC = 5

a) Xét ΔABD vuông tại B và ΔAED vuông tại E có 

AD chung

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))

Do đó: ΔABD=ΔAED(Cạnh huyền-góc nhọn)

Suy ra: AB=AE(Hai cạnh tương ứng)

b) Ta có: ΔABD=ΔAED(cmt)

nên DB=DE(hai cạnh tương ứng)

Xét ΔBDF vuông tại B và ΔEDC vuông tại E có

DB=DE(cmt)

\(\widehat{BDF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔBDF=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(hai cạnh tương ứng)

Xét ΔDFC có DF=DC(cmt)

nên ΔDFC cân tại D(Định nghĩa tam giác cân)

c) Ta có: ΔBDF=ΔEDC(cmt)

nên BF=EC(hai cạnh tương ứng)

Ta có: AB+BF=AF(B nằm giữa A và F)

AE+EC=AC(E nằm giữa A và C)

mà AB=AE(cmt)

và BF=EC(cmt)

nên AF=AC

Xét ΔAFC có AF=AC(cmt)

nên ΔAFC cân tại A(Định nghĩa tam giác cân)

21 tháng 4 2021

xét ΔABH và ΔMBH có:

\(\widehat{HMB}\)=\(\widehat{HAB}\)=90o

BH là cạnh chung

\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH la phân giác của \(\widehat{MBA}\))

⇒ΔABH=ΔMBH(cạnh huyền góc nhọn)

⇒BM=AB(2 cạnh tương ứng)

⇒ΔABM cân tại B

\(\widehat{ABM}\)=\(\widehat{MAB}\)

gọi I là giao điểm của AM và BH

xét ΔMBI và ΔABI có

AB=BM(ΔABH=ΔMBH)

\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH là phân giác của \(\widehat{MBA}\))

\(\widehat{ABM}\)=\(\widehat{MAB}\)(chứng minh trên)

⇒ΔMBI=ΔABI (g-c-g)

\(\widehat{MIB}\)=\(\widehat{AIB}\)(2 góc tương ứng)(1)

Mà \(\widehat{MIB}\)+\(\widehat{AIB}\)=180o(2 góc kề bù)(2)

Từ (1) và (2) \(\widehat{MIB}\)=\(\widehat{AIB}\)=\(\dfrac{180^o}{2}\)=90o

⇒BH⊥AM (Điều phải chứng minh)

xét ΔCMH và ΔNAH có:

\(\widehat{CMH}\)=\(\widehat{HAN}\)=90o

\(\widehat{CHM}\)=\(\widehat{NHA}\)(2 góc đối đỉnh)

AH=HM(ΔABH=ΔMBH)

⇒ΔCMH=ΔNAH(g-c-g)

⇒HC=HN(2 cạnh tương ứng)

⇒ΔCHN cân tại H

\(\widehat{NCH}\)=\(\widehat{CNH}\)

vì ΔABH=ΔMBH

⇒AH=HM(2 cạnh tương ứng)

⇒ΔAHM cân tại H

\(\widehat{HMA}\)=\(\widehat{HAM}\)

xét ΔNHC và ΔMHA có

\(\widehat{MHA}\)=\(\widehat{CHN}\)(2 góc đối đỉnh)

\(\widehat{HMA}\)+\(\widehat{HAM}\)=\(\widehat{NCH}\)+\(\widehat{CNH}\)

Mà \(\widehat{HMA}\)=\(\widehat{HAM}\)(chứng minh trên)và\(\widehat{NCH}\)=\(\widehat{CNH}\)(chứng minh trên)

\(\widehat{HMA}\)=\(\widehat{NCH}\)

⇒AM // CN (điều phải chứng minh)