K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

Áp dụng định lí Py-ta-go vào tam giác AHB vuông tại H có:

\(AB^2=AH^2+BH^2\)

=>\(BH^2=AB^2-AH^2=\left(8,5\right)^2-4^2=72.25-16=56.25\)

=> \(BH=\sqrt{56,25}=7.5\)

Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H có:

\(AC^{2^{ }}=AH^2+HC^2\)

=>\(HC^2=AC^2-AH^2=5^2-4^2=25-16=9\)

=>\(HC=\sqrt{9}=3\)

Vì H thuộc BC => BC=HB+HC=7.5+3=10.5

Chu vi tam giác ABC là: AB+AC+BC=8,5+5+10,5=24(cm)

Vậy chu vi tam giác ABC là 24 cm

9 tháng 4 2017

Kết quả không phải là 24 cm. Vì H nằm ngoài đoạn thẳng BC.

3 tháng 3 2016

Gọi I là giao điểm của AH và BC

Áp dụng định lí pytago trong tam giác vuông ABI ta có

BI2=AB2-AH2

BI2=8.52-42=56.25

BI=căn bậc hai của 56.25

Áp dụng định lí pytago trong tam giác vuông AIC ta có

IC^2=AC^2-AI^2

HC^2=5^2-4^2=9

HI=3

Ta co BI+IC=BC

      7.5+3=10.5

Chu vi của tam giác ABC là 8.5+5+10.5=24

1 tháng 3 2019

AB = 13 cm, BC = 21 cm.

Từ đó, chu vi của tam giác ABC là 54 cm.

4 tháng 2 2016

ta có:AB=5;AC=5

=>AB=AC(=5)

xét tg ABH và tg ACH vuông tại H:

AH:cạnh chung

AB=AC(cmt)

=>tg ABH=tg ACH(ch-cgv)

=>BH=CH (cặp cạnh tương ứng)

mà BH+CH=BC=6

=>BH=CH=3(cm)

xét tg  ABH vuông tại H có:

AB2=AH2+HB2(đ/l pytago)

=>AH2=AB2-HB2=52-32=16=42

=>AH=4

4 tháng 2 2016

Ta có tam giác ABC cân tại A (AB=AC) suy ra BH=CH=3cm, dùng Pytago cho tam giác AHB tính ra được AH=4 cm

10 tháng 1 2019

(tự vẽ hinh)

* Do AH vuông góc vs BC(gt)

=> Tam giác AHC và tam giác AHC là tam giác vuông tại H

* Tam giác vuông AHC có:

AC^2=AH^2+HC^2(ĐL py-ta-go)

20^2=12^2+HC^2

400=144+HC^2

HC^2=400-144

HC^2=256

HC^2=16^2(vì HC>0)

=>HC=16 cm

* Tam giác AHB có:

AB^2=AH^2+HB^2(DL py-ta-go)

AB^2=12^2+5^2

AB^2=144+25

AB^2=169

AB^2=13^2(vì AB>0)

=>AB=13 cm

*Ta có:

BH+HC=BC(AH vuống góc với BC tại H)

5+16=BC

=>BC=21cm

*Chu vi tam giác ABC:

AB+BC+AC=13+21+20=53cm

* Tam giác AHB và tam giác AHC là tam giác vuông trong vì:

AH vuông góc với BC tại H

AH cát BC tại hH tạo thành 2 tam giác vuông trong tam giác ABC

25 tháng 1 2021

Xét tam giác AHC vuông tại H có:

                AC= HC2 + AH2 (định lý Pytago)

Thay số:   7.52 = HC2 + 4.52

<=> HC2 = 7.52 - 4.52

<=> HC2 = 56,25 - 20,25  = 36 = 6 (cm)

Ta có: BC = BH + HC 

Thay số: BC = 1,875 + 6 = 7,875 (cm)

Xét tam giác AHB vuông tại H có:

               AB= BH2 + AH2 (định lý Pytago)

Thay số: AB= 1,875+ 4,5 2

<=> AB\(\dfrac{225}{64}\) + \(\dfrac{81}{4}\) = \(\dfrac{1521}{64}\)

<=> AB = 4,875  (cm)

Chu vi tam giác ABC là: AB + AC + BC =  4,875 + 7,5 + 7,875

                                                               =    20,25  (cm)

 

25 tháng 1 2021

A B C H 7.5 4.5 1.875

Xét \(\Delta ABH\) có AH \(\perp\) BH , theo định lí Pytago ta có :

      AB2    =    AH2  +  BH2 

=>AB2      =   4.52  +  1.8752

=>AB2      =   23.765625.......

=>AB       =  4.875 (cm)

Có AH \(\perp\) BC, theo định lí Pytago ta có :

     HC2  =  AH2 +  AC2

=> HC2  = 76.5

=> HC   = 8.746427842 \(\approx\) 8.8 (cm)

=> BC = 10.675 (cm)

Chu vi \(\Delta ABC\) là : AC   +   BC   +   AB  =  23.05 (cm)