K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2019

Chọn C.

Các vecto cùng phương với  có điểm đầu và điểm cuối là các đỉnh của lục giác

19 tháng 11 2023

Số vecto khác vecto 0, có điểm đầu điểm cuối lấy từ 7 điểm A,B,C,D,E,F,O là:

\(A^2_7=7\cdot6=42\left(vecto\right)\)

13 tháng 9 2021

Chọn điểm AA là điểm đầu thì chọn điểm cuối có 44 lựa chọn do →AA=⃗0AA→=0→

Tương tự chọn điểm BB là điểm đầu có 4 lựa chọn  điểm cuối , chọn điểm CC là điểm đầu có 44 lựa chọn điểm cuối, chọn điểm DD là điểm đầu thì có 44 lựa chọn ở điểm cuối.

Vậy số vector khác vector không có điểm đầu và điểm cuối là các điểm đó là 4+4+4+4+4=204+4+4+4+4=20 vector.

13 tháng 9 2021

Chọn điểm AA là điểm đầu thì chọn điểm cuối có 44 lựa chọn do →AA=⃗0AA→=0→

Tương tự chọn điểm B là điểm đầu có 4 lựa chọn  điểm cuối , chọn điểm C là điểm đầu có 4 lựa chọn điểm cuối, chọn điểm D là điểm đầu thì có 44 lựa chọn ở điểm cuối.

Vậy số vector khác vector không có điểm đầu và điểm cuối là các điểm đó là 4+4+4+4+4=20 vector.

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Câu 5:

D. Các vector \(\overrightarrow{AB}, \overrightarrow{BA}, \overrightarrow{AC}, \overrightarrow{CA}, \overrightarrow{BC}, \overrightarrow{CB}\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Câu 6: B

Câu 7: A

Chọn D

NV
4 tháng 11 2021

Do G là trọng tâm tam giác 

\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AD}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=\dfrac{1}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{CB}+\dfrac{1}{3}\overrightarrow{AC}\)

\(=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{CB}=-\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\)

Do I là trung điểm AG

\(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AG}=\dfrac{1}{2}\left(-\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\right)=-\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)

\(\overrightarrow{AK}=\dfrac{1}{5}\overrightarrow{AB}=\dfrac{1}{5}\left(\overrightarrow{AC}+\overrightarrow{CB}\right)=-\dfrac{1}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}\)

\(\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=\overrightarrow{CA}-\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}=\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)

\(\overrightarrow{CK}=\overrightarrow{CA}+\overrightarrow{AK}=\overrightarrow{CA}-\dfrac{1}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}=\dfrac{4}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}\)

NV
4 tháng 11 2021

undefined

a: vecto AB=(-7;1)

vecto AC=(1;-3)

vecto BC=(8;-4)

b: \(AB=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)

\(AC=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)

\(BC=\sqrt{8^2+\left(-4\right)^2}=\sqrt{80}=4\sqrt{5}\)