Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) ta có :AB2=32=9
AC2=42=16
BC2=52=25
=>AB2+AC2=BC2(định lí pytago đảo)
=> tam giác ABC là tam giác vuông tại A
Chúc bạn học tốt!!!
a, Ta có :
\(AB^2+AC^2=3^2+4^2=9+16=25\)
\(BC^2=5^5=25\)
Vì AB^2 + AC^2 = BC^2
=> \(\Delta\)ABC là tam giác vuông tại A ( Pi - ta - go đảo )
b, Xét \(\Delta\)ABH và \(\Delta\)DBH ta có
^A = ^D = 900
AB = BD (gt)
=> \(\Delta\)ABH = \(\Delta\)DBH (ch-cgv)
=> ^HBD = ^ABH (tương ứng)
Vậy BH là p/g ^ABH
AB = AC => Tam giác ABC cân tại A
a. Xét tam giác AMB và tam giác AMC
AB = AC ( gt )
Góc B = góc C ( ABC cân )
BM = CM ( gt )
Vậy...... ( c.g.c)
=> góc BAM = góc CAM ( 2 góc tương ứng )
=> AM là phân giác góc A
b. trong tam giác cân ABC đường phân giác cũng là đường cao
=> AM vuông BC
c.tam giác MEF là tam giác cân vì:
xét tam giác vuông BME và tam giác vuông CMF
Góc B = góc C
MB = MC ( gt )
Vậy....( cạnh huyền. góc nhọn )
=> ME = MF ( 2 cạnh tương ứng )
Chúc bạn học tốt !!!
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
Suy ra: ME=MF
hay ΔMEF cân tại M
a)Ta có: BC2 = 52 = 25
AB2 + AC2 = 32 + 42 = 25
Vì AB2 + AC2 = BC2
=> Tam giác ABC vuông tại A (Theo định lí py-ta-go đảo).
b) Xét tam giác ABH và tam giác DBH có:
Gc A = Gc D(=900)
AB=BD (gt)
HB cạnh huyền chung.
Do đó: tam giác ABH = tam giác DBH (ch-cgv)
=> Gc ABH = Gc HBD (2 góc tưng ứng)
=> BH là phân giác của Gc ABC
c) P/s: Bn viết sai đề thì phải. Tg ABC không thể cân. Mà Tg AMB hoặc Tg AMC mới cân.
Xét tg ABC vng tại A.(cm ở câu a)
Có AM là trung tuyến.
=> AM = BM = CM (Vì trung tuyến ứng vs cạnh huyền thì = nửa cạnh huyền)
=> Tg AMB hoặc Tg AMC cân.
a) Do AM là tia phân giác của ∠BAC (gt)
⇒ ∠BAM = ∠CAM
Xét ∆ABM và ∆ACM có:
AB = AC (gt)
∠BAM = ∠CAM (cmt)
AM là cạnh chung
⇒ ∆ABM = ∆ACM (c-g-c)
b) Do ∆ABM = ∆ACM (cmt)
⇒ BM = CM (hai cạnh tương ứng)
⇒ M là trung điểm của BC
Do ∆ABM = ∆ACM (cmt)
⇒ ∠AMB = ∠AMC (hai góc tương ứng)
Mà ∠AMB + ∠AMC = 180⁰ (kề bù)
⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰
⇒ AM ⊥ BC
c) Do ∠BAM = ∠CAM (cmt)
⇒ ∠EAM = ∠FAM
Xét hai tam giác vuông: ∆AME và ∆AMF có:
AM là cạnh chung
∠EAM = ∠FAM (cmt)
⇒ ∆AME = ∆AMF (cạnh huyền góc nhọn)
⇒ ME = MF (hai cạnh tương ứng)
a,
Xét tam giác ABC có:
+ AB = AC (giả thuyết)
+ Góc CAM = MAB (AM là phân giác góc BAC)
+ AM chung
⇒ 2 tam giác bằng nhau (cgc) (đpcm)
b,
Ta có:
+ Tam giác AMC = Tam giác ABM (theo câu a)
⇒ CM = MB (2 cạnh tương ứng) (1)
⇒ M là trung điểm BC (đpcm)
+ Mà AM là tia phân giác góc CAB (2)
+ Góc AMC = Góc AMB (3)
Từ (1), (2), (3).
⇒ AM ⊥ BC (t/c) (đpcm)
c,
Ta có:
Tam giác ACM = Tam giác ABM (theo câu A)
⇒ Góc ACM = Góc ABM (2 góc tương ứng)
Ta có:
+ ME ⊥ AB (giả thuyết)
⇒ Tam giác MEB vuông tại E
+ MF ⊥ AC (giả thuyết)
⇒ Tam giác CFM vuông tại F
Xét tam giác CFM vuông tại F và tam giác MEB vuông tại E có:
+ Góc ACM bằng góc ABM (chứng minh trên)
+ MC = MB (theo câu b)
⇒ Hai tam giác CFM = MEB (cạnh huyền góc nhọn)
⇒ ME = MF (hai cạnh tương ứng) (đpcm)
Có sai đề j ko ạ?
sao MI =MA đc ak
Cho tam giác MNK có MK=MN. Cho số đo góc M là 50 độ. Tìm số đo góc N, góc K.