Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc A=180-60=120 dộ
=>góc EAB=60 độ=góc BAI
Xet ΔEAB và ΔIAB có
góc EAB=góc IAB
AB chung
EA=IA
=>ΔEAB=ΔIAB
=>BE=BI
=>AB là trung trực của IE
Chứng minh tương tự, ta được: AC là trung trực của IF
b: góc EAB=góc FAC=60 độ
=>góc EAB+góc BAI=góc FAC+góc IAC
=>góc EAI=góc FAI
Xét ΔEAI và ΔFAI có
AI chung
góc EAI=góc FAI
AE=AF
=>ΔEAI=ΔFAI
=>EI=FI
=>ΔIFE cân tại I
=>góc EIF=2*góc AIE
ΔEAI cân tại A
=>góc AIE=(180-60-60)/2=30 độ
=>góc EIF=60 độ
=>ΔIEF đều
c: góc AIE=góc AIF
=>AI là phân giác của góc EIF
mà ΔEIF đều
nên AI vuông góc EF
a, có MD=MA
BM=CM( M là trung điểm)
mà \(MA=\frac{BC}{2}\)(đường trung tuyến ứng với cạnh huyền của tam giác ABC
=> MA=MB=MD=MC hay MA+MD=MC+MD=> AD=BC
=> ABCD là hcn ( tính chất 2 đường chéo bằng nhau
Đây nhé bạn!!!!
a) Xét tam giác ANE và tg BNC có
góc ẢNE= góc BNC( đối đỉnh )
BN=NE ( gt)
AN=NC( N td AC)
suy ra tg ANE= góc BNC ( c.g.c)
suy ra góc AEN = góc NBC( hai góc tuơng ứng)
suy ra AE//BC( hai góc slt) (1)
Xét tg DAM và tg CBM có
góc DAM= góc CMB
AM=BM (M td AB)
DM=MC( GT)
Suy ra tg DAM= tg CMB( C.g.c)
suy ra góc ADM= góc MCB( hai góc t/ư)
Suy ra DA//BC( hai góc so le trong) (2)
Từ (1) và (2) suy ra D,A,E thẳng hàng( tiên đề Ơ-clít)
b)Xét tam giác ABC có AM=BM(gt)
AN=NC(gt)
suy ra MN là đuơng trung bình tam giác ABC SUy ra MN//BC
MN=1/2 BC
MÀ DE // BC(cmt) suy ra MNED là hình thang
Ta lại có AE=BC(tg ANE=tg BNC)
AD= BC(TG ADM=tg MCB)
suy ra AE+AD=2bc
suy ra DE=2BC
mà MN=1/2 BC
SUY ra MN=1/4DE
a) Ta có: CF = AF = AC / 2 (F là trung điểm của AC)
BE = AE = AB / 2 (E là trung điểm AB)
Mà AC = AB (tam giác ABC cân tại A)
=> AF = AE = CF = BE
=> tam giác AFE cân tại A (1)
Ta có: F, E lần lượt là trung điểm của AC, AB (gt)
=> FE là đường trung bình của tam giác ABC
=> FE // BC
Mà AI vuông góc với CB (AI là đường cao)
=> AI vuông góc với FE (2)
Từ (1), (2) => AI cũng là đường trung trực của FE (giải thích thêm: tính chất các đường thẳng từ đỉnh của tam giác cân)
=> E đối xứng với F qua AI (đpcm)
b) Xét tứ giác FEBC, có:
* EF // BC (cmt)
=> FEBC là hình thang
Mà FC = EB (cmt)
=> FEBC là hình thang cân
Xét tam giác FOC và tam giác EOB, có:
* FC = EB (cmt)
* góc CFO = góc BEO (FEBC là hình thang cân)
* FO = EO (E đối xứng với F qua O; O thuộc AI)
=> tam giác FOC = tam giác EOB (c.g.c)
=> góc FOC = góc EOB (yếu tố tương ứng)
Mà góc HOF, góc KOE lần lượt đối đỉnh với góc EOB và góc FOC
=> góc HOF = góc KOE
Xét tam giác HOF và tam giác KOE, có:
* góc HFO = góc KEO ( tam giác AFE cân tại A)
* FO = EO (E đối xứng với F qua AO)
* góc HOF = góc KOE (cmt)
=> tam giác HOF = tam giác KOE (g.c.g)
=> HF = KE (yếu tố tương ứng) (đpcm)
c) Xét tam giác HOK, có:
* OH = OK ( tam giác HFO = tam giác KEO)
=> tam giác HOK cân tại O
=> góc OHK = góc OKH (t/c)
Ta có: góc AOH + góc HOF = 90 độ (AI vuông góc FE)
góc AOK + góc KOE = 90 độ (AI vuông góc FE)
Mà góc HOF = góc KOE (cmt)
=> góc AOH = góc AOK
=> OA là phân giác của góc HOK
=> OA cũng là đường trung trực của tam giác cân OKH
=> OA vuông góc HK ( t/c)
Mà OA vuông góc FE ( AI vuông góc FE ; O thuộc AI)
=> HK // FE
Mà FE // CB (cmt)
=> HK // CB
=> HKBC là hình thang
Mà góc HCB = góc KBC ( tam giác ABC cân tại A; H thuộc AC; K thuộc AB)
=> HKBC là hình thang cân (đpcm)