Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O M N
a)
Các véc tơ cùng phương với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{OM};\overrightarrow{MN};\overrightarrow{NM};\overrightarrow{NO};\overrightarrow{ON};\overrightarrow{DC};\overrightarrow{CD};\overrightarrow{BA};\overrightarrow{AB}\).
Hai véc tơ cùng hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{ON}\).
Hai véc tơ ngược hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{OM};\overrightarrow{ON}\).
b) Một véc tơ bằng véc tơ \(\overrightarrow{MO}\) là: \(\overrightarrow{ON}\).
Một véc tơ bằng véc tơ \(\overrightarrow{OB}\) là: \(\overrightarrow{DO}\).
A B C M N
Do M, N là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC nên MN//BC.
Do vậy hai véc tơ \(\overrightarrow{NM}\) và \(\overrightarrow{BC}\) cùng phương.
A’ là trung điểm của cạnh BC nên -4 = (xB+ xC)
=> xB+ xC = -8 (1)
Tương tự ta có xA+ xC = 4 (2)
xB+ xC = 4 (3)
=> xA+ xB+ xC =0 (4)
Kết hợp (4) và (1) ta có: xA= 8
(4) và (2) ta có: xB= -4
(4) và (3) ta có: xC = -4
Tương tự ta tính được: yA = 1; yB = -5; yC = 7.
Vậy A(8;1), B(-4;-5), C(-4; 7).
Gọi G la trọng tâm tam giác ABC thì
xG= = 0; yG = = 1 => G(0,1).
xG’= ; yG’ = = 1 => G'(0;1)
Rõ ràng G và G’ trùng nhau.
\(\overrightarrow{KD}=\overrightarrow{KA}+\overrightarrow{AD}=-\overrightarrow{AK}+\overrightarrow{AD}\)
\(=-\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)+\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=-\frac{1}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\right)+\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\)
\(=\frac{1}{4}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\)
Do M và N lần lượt là trung điểm của BC và AC nên MN là đường trung bình của tam giác AB.
Đáp án B
B