Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này bạn tự kẻ hình giúp mình nha!
1. Xét tam giác AMB và tam giác CMD có:
AM = CM ( M là trung điểm của AC )
AMB = CMD ( 2 góc đối đỉnh )
BM = DM (gt)
=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)
=> BAM = DCM ( 2 góc tương ứng)
=> DCM = 90o => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )
2.
Xét tam giác AMD và tam giác CMB có:
AM = CM ( Theo 1.)
AMD = CMB ( 2 góc đối đỉnh )
DM = BM (gt)
=> tam giác AMD = tam giác CMB ( c.g.c)
=> AD = BC (2 cạnh tương ứng) (dpcm)
=> ADM = CBM (2 góc tương ứng)
Mà góc ADM và và góc CBM ở vị trí so le trong
=> AD // BC (dpcm)
3. Xét tam giác AEN và tam giác BCN có:
AN=BN ( N là trung điểm của AB)
ANE = BNC ( 2 góc đối đỉnh )
NE = NC (gt)
=> Tam giác AEN = tam giác BCN ( c.g.c)
=> AE = BC ( 2 cạnh tương ứng ) (1)
=> EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC (2)
Theo 2. ta có : +) AD=BC (3)
+) AD // BC (4)
Từ (1) và (3) Suy ra AE = AD (5)
Từ (2) và (4) Suy ra A,E,D thẳng hàng (6)
Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)
A B C N M E D 1 2 1 2
a) Xét \(\bigtriangleup ADM\) và \(\bigtriangleup CBM\) ta có :
MD = MB (gt)
\(\widehat{M_1}=\widehat{M_2}\) (2 góc đối đỉnh)
AM = CM (gt)
=> \(\bigtriangleup ADM=\bigtriangleup CBM\) (c.g.c)
=> AD = BC (2 cạnh tương ứng) (1)
Xét \(\bigtriangleup AEN\) và \(\bigtriangleup BCN\) ta có :
AN = BN (gt)
\(\widehat{N_1}=\widehat{N_2}\) (2 góc đối đỉnh)
EN = CN (gt)
=> \(\bigtriangleup AEN=\bigtriangleup BCN\) (c.g.c)
=> AE = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) => AD = AE
b) Ta có : \(\bigtriangleup ADM=\bigtriangleup BCM\) (CMT)
=> \(\widehat{ADM}=\widehat{BCM}\) (2 góc tương ứng)
Mà \(\widehat{ADM}\) và \(\widehat{BCM}\) là 2 góc so le trong
=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)
Ta có : \(\bigtriangleup AEN=\bigtriangleup BCN\) (CMT)
=> \(\widehat{AEN}=\widehat{BCN}\) (2 góc tương ứng)
=> Mà \(\widehat{AEN}\) và \(\widehat{BCN}\) là 2 góc so le trong
=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)
Từ (3) và (4) => \(A,D,E\) thẳng hàng (theo tiên đề Ơ-clit)
A B C M N D E
a, +)Xét \(\Delta BCN\) và \(\Delta AEN\) có:
NC= NE (GT)
\(\widehat{BNC}=\widehat{ANE}\) ( đối đỉnh)
BN=NA (GT)
\(\Rightarrow\Delta BCN=\Delta AEN\) (c-g-c)
b, Theo câu a, ta có \(\Delta BCN=\Delta AEN\)
=> BC=AE (2 cạnh tương ứng) (1)
c, Xét \(\Delta ADM=\Delta CBM\)có
AM=BM (gt)
\(\widehat{AMD}=\widehat{CMB}\) (đối đỉnh)
DM=BM (gt)
\(\Rightarrow\Delta ADM=\Delta CBM\)
=> AD= BC ( 2 cạnh tương ứng) (2)
Từ (1) và (2) => AD= AE
c, Theo câu a, ta có \(\Delta BCN=\Delta AEN\)
=>\(\widehat{CBN}=\widehat{EAN}\)( 2 góc tương ứng)
Mà 2 góc này ở vị trí SLT => AE//BC (*1)
Theo câu b ta có \(\Delta ADM=\Delta CBM\)
=> \(\widehat{ADM}=\widehat{CBM}\) ( 2 goc t/ứ)
Mà 2 góc này ở vị trí SLT => AD//BC (*2)
Từ (*1) và (*2) => E, A, D thẳng hàng (theo tiên đề Ơ- clic)
Mở rộng thêm nha
Từ E, A ,D thẳng hàng =>A nằm giữa E và D ( vs kiến thưc lp 7 thì suy a luôn v)
Kết hợp vs cả cái AE= AD => A là trung điểm của DE
a) Xét △ADM△ADM và △CBM△CBM ta có :
MD = MB (gt)
ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)
AM = CM (gt)
=> △ADM=△CBM△ADM=△CBM (c.g.c)
=> AD = BC (2 cạnh tương ứng) (1)
Xét △AEN△AEN và △BCN△BCN ta có :
AN = BN (gt)
ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)
EN = CN (gt)
=> △AEN=△BCN△AEN=△BCN (c.g.c)
=> AE = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) => AD = AE
b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)
=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)
Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong
=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)
Ta có : △AEN=△BCN△AEN=△BCN (CMT)
=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)
=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong
=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)
Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
Giải
bn tự vẽ hình nha
Xét tam giác AEC có:
AM=MC;EN=NC(gt)
=> MN là đường trung bình của tam giác AEC
=> MN=1/2 AE(1)
xét tam giác ABD có: An=NB ; MB =MD(gt)
=> MN là đường trung bình của tam giác ÂBD
=> MN= 1/2 .AD
Từ câu a) ta có:
MN là đường trung bình của tam giác ACE => MN//AE(1)
MN cũng là đường trung bình của tam giác ABD => MN//AD(2)
từ 1 và 2 theo tiên đề ơ-clit
=> AE và AD là 1 đường thường
=> A.D,E thẳng hàng
=>đpcm
Bạn tự vẽ hình nha!
Xét tam giác AEC có:
AM = MC ; EN = NC (gt)
=> MN là đường trung bình của tam giác AEC
=> MN = 1/2.AE (1)
xét tam giác ABD có: AN = NB ; MB = MD (gt)
=> MN là đường trung bình của tam giác ABD
=> MN = 1/2.AD
Ta có:
MN là đường trung bình của tam giác ACE => MN // AE (CMT) (1)
MN cũng là đường trung bình của tam giác ABD => MN // AD (2)
từ (1) và (2) theo tiên đề Ơ-clit
=> AE và AD là 1 đường thường
=> A,D,E thẳng hàng
=>đpcm