K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

Đáp án A

8 tháng 12 2017

26 tháng 9 2018

Chọn B.

 

Ta có 

mà 

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:

Theo đề ta có: $\overrightarrow{BM}=2\overrightarrow{MC}=-2\overrightarrow{CM}$

$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}(1)$

$=\overrightarrow{AB}-2\overrightarrow{CM}$

$\overrightarrow{AM}=\overrightarrow{AC}+\overrightarrow{CM}$

$\Rightarrow 2\overrightarrow{AM}=2\overrightarrow{AC}+2\overrightarrow{CM}(2)$

Lấy $(1)+(2)\Rightarrow 3\overrightarrow{AM}=\overrightarrow{AB}+2\overrightarrow{AC}$

$\Rightarrow \overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Hình vẽ:

31 tháng 12 2023

Xét ΔBAD có BI là đường trung tuyến

nên \(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

=>\(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{5}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{1}{3}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)=\dfrac{1}{6}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)=\dfrac{5}{6}\left(\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\right)\)

\(\overrightarrow{BM}=\overrightarrow{BA}+\overrightarrow{AM}\)

\(=\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\)

=>\(\overrightarrow{BI}=\dfrac{5}{6}\cdot\overrightarrow{BM}\)

=>B,I,M thẳng hàng

25 tháng 12 2023

Cách 1: Dùng định lý Menelaus đảo:

Từ đề bài, ta có \(\dfrac{BD}{BC}=\dfrac{2}{3}\)\(\dfrac{MC}{MA}=\dfrac{3}{2}\)\(\dfrac{IA}{ID}=1\)

\(\Rightarrow\dfrac{BD}{BC}.\dfrac{MC}{MA}.\dfrac{IA}{ID}=1\)

Theo định lý Menelaus đảo, suy ra B, I, M thẳng hàng.

Cách 2: Dùng vector

 Ta có \(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}.\dfrac{2}{3}\overrightarrow{BC}\)

\(=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\) 

\(=\dfrac{1}{6}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

Lại có \(\overrightarrow{BM}=\dfrac{MC}{AC}\overrightarrow{BA}+\dfrac{MA}{AC}\overrightarrow{BC}\)

\(=\dfrac{3}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{BC}\)

\(=\dfrac{1}{5}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

\(=\dfrac{6}{5}.\dfrac{1}{6}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

\(=\dfrac{6}{5}\overrightarrow{BI}\)

Vậy \(\overrightarrow{BM}=\dfrac{6}{5}\overrightarrow{BI}\), suy ra B, I, M thẳng hàng. 

 

16 tháng 2 2021

Số GP đẹp nhỉ?

Tròn trĩnh luôn

16 tháng 2 2021

Ủa sao học 12 mà hỏi câu lớp 10 z ? 

12 tháng 3 2019

Dùng kết quả: Nếu B, C, M thẳng hàng và A M →   =   x A B →   +   y A C → thì x + y = 1 để loại các phương án A, B, D.

Đáp án C