Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :
AM = DM (gt)
góc AMB = góc DMC ( đối đỉnh )
BM = CM (gt)
=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )
=> AB = DC ( hai canh tương ứng )
+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)
=> góc ABM = góc DCM ( hai góc tương ứng )
Mà hai góc này ở vị trí sole trong
=> AB // DC
b) Ta có : AB // CD (cmt)
AB \(\perp\) AC (gt)
=> DC \(\perp\)AC
Xét \(\Delta\)ABC và \(\Delta\)CDA có :
AB = CD (cmt)
góc BAC = góc DCA ( = 90 độ )
AC chung
=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )
=> BC = DA ( hai cạnh tương ứng )
Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)
c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :
AB chung
góc BAE = góc BAC ( = 90 độ )
AE = AC (gt)
=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )
=> BE = BC và góc BEA = góc BCA ( hai góc tương ứng ) (1)
Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)
=> \(\Delta\)AMC cân tại M
=> góc MAC = góc MCA
hay góc MAC = góc BCA (2)
Từ (1) và (2) => góc MAC = góc BEC
Mà hai góc này ở vị trí đồng vị
=> AM // BE (đpcm)
d) Câu này mình không hiểu đề lắm !!
Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.
e) Ta có : BE // AM
=> BE // AD
=> góc EBO = góc DAO
Xét \(\Delta\)EBO và \(\Delta\)DAO có :
BE = AD ( = BC )
góc EBO = góc DAO (cmt)
OB = OA (gt)
=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )
=> góc EOB = góc DOA ( hai góc tương ứng )
Mà : góc EOB + góc EOA = 180 độ
=> góc DOA + góc EOA = 180 độ
hay : góc EOD = 180 độ
=> Ba điểm E, O, D thẳng hàng (đpcm)
Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath
Gọi D là trung điểm AB
=> AD = AB/2
Xét tam giác ABC có :
D là trung điểm AB ( cách vẽ )
M là trung điểm BC ( GT )
=> DM là đường trung bình của tam giác ABC
=> DM = AC/2
Xét tam giác ADM , theo quan hệ 3 cạnh của tam giác ta được :
AD + DM > AM
=> ( AB/2 + AC /2 ) > AM ( vì AD = AB/2, DM = AC/2 )
=> ( AC + AB )/2 > AM
=> ( b+c )/2 > AM ( do AB = c, AC = b theo GT )
(nãy chưa vẽ thêm D, bn tự vẽ tiếp D nhé)
Trên tia đối của tia AM lấy điểm D sao cho AM=MD
Xét tam giác AMB VÀ TAM GIÁC DMC có
MB=MC(gt)
AM=MD(cách dựng)
\(\widehat{AMB}=\widehat{DMC}\)(ĐÓI ĐỈNH)
\(\Rightarrow\)Tam giác AMB=Tam giác BMC(c-g-c)
\(\Rightarrow\)AB=CD(2 cạnh tương ứng)
Xét tam giác ACD có
AD<CD+AC(bất đẳng thức tam giác)
\(\Rightarrow\)AD<AB+AC(VÌ AB=CD)
Mà AD=AM+MD=2AM
\(\Rightarrow2AM< AB+AC\)
\(\Rightarrow AM< \frac{AB+AC}{2}\)(ĐPCM)
Kẻ đoạn thẳng AM
Trên tia AM lấy điểm K sao cho M là trung điểm của AK
=> MA = MK = AK/2 => 2AM = AK
M là trung điểm của BC ( gt ) => MB = MC
Xét tam giác AMB và tam giác KMC có :
MA = MK ( cmt )
AMB = KMC ( đối đỉnh )
MB = MC ( cmt )
Do đó tam giác AMB = tam giác KMC ( c . g . c )
=> AB = CK ( 2 cạnh tương ứng )
CÓ AK < AC + CK ( bất đẳng thức trong tam giác )
hay 2AM < AC + AB
=> AM < \(\frac{AC+AB}{2}\)( dpcm )
Vậy ...
Áp dụng bất đẳng thức tam giác với hai tam giác AMB và AMC ,ta lần lượt có :
AM > AB - BM
AM > AC - MC
Cộng theo từng vế hai bất đẳng thức trên,ta có :
2AM > AB + AC - (BM + MC) = AB + AC - BC hay \(AM>\frac{AB+AC-BC}{2}\) (1)
Trên tia đối của tia MA lấy điểm D sao cho MD = MA
Xét \(\Delta AMB\)và \(\Delta DMC\)có :
AM = DM(gt)
MB = MC(gt)
\(\widehat{M}\)chung
=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
=> \(\widehat{MAB}=\widehat{MDC}\)(hai góc tương ứng)
=> CD = AB(hai cạnh tương ứng)
Xét \(\Delta ACD\),theo bất đẳng thức tam giác ta có :
AD < AC + CD
=> \(2AM< AC+AB\)
=> \(AM< \frac{AB+AC}{2}\)(2)
Từ (1) và (2) suy ra \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\)
Xét tam giác AMB và tam giác AMC có:
AB=AC(giả thiết)
AM chung
MB=MC(M là trung điểm BC)
Từ 3 điều trên, ta có tam giác AMB=tam giác AMC=>góc B=góc C
b/ Ta có tam giác AMB=tam giác AMC=>góc BAM=góc CAM=>AM là tia phân giác của góc BAC
c/ Ta có tam giác AMB=tam giác AMC=>góc AMB=góc AMC mà tổng 2 góc này bằng 180 độ=>góc AMB=góc AMC=>AM vuông góc với BC
Trên tia đối của tia MA, lấy K sao cho MK = MA
Trong tam giác AKC, AK < KC + AC (1)
Do AM = MK => M là trung điểm AK => AM = MK = AK/2 => 2AM = 2MK = AK (2)
Xét tam giác ABM = tam giác KCM (c-g-c) => KC = AB (3)
Từ (1); (2) và (3) => 2AM < AB + AC => AM < (AB + AC)/2