K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

A B C I K 1 M N 2 1 2 1 2

( HÌNH vẽ hơi xấu )
                                        CM

a)  Xét tam giác MAI và tam giác MBC có: 

\(\hept{\begin{cases}MA=MB\left(gt\right)\\\widehat{M1}=\widehat{M2}\left(2gocdoidinh\right)\\MI=MC\left(gt\right)\end{cases}\Rightarrow\Delta}MAI=\Delta MBC\left(c-g-c\right)\)

b) Xét tam giác NAK và tam giác NCB có: 

\(\hept{\begin{cases}NA=NC\left(gt\right)\\\widehat{N1}=\widehat{N2}\left(2gocdoidinh\right)\\NB=NK\left(gt\right)\end{cases}}\Rightarrow\Delta NAK=\Delta NCB\left(c-g-c\right)\)

c) Vì \(\Delta MAI=\Delta MBC\left(cmt\right)\)

\(\Rightarrow\widehat{A1}=\widehat{ABC}\)( 2 góc t..ứng ) 

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AI//BC\left(1\right)\)

Vì \(\Delta NAK=\Delta NCB\left(cmt\right)\)

\(\Rightarrow\widehat{A2}=\widehat{ACB}\)

Mà 2 góc này ở vị trí so le trong 

\(\Rightarrow AK//BC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow A,I,K\)thẳng hàng ( định lý Py-ta-go )

20 tháng 7 2019

Bạn ơi mình nhầm nhé dòng cuối cùng là theo tiên đề Ơ-clit nha xin lỗi

2 tháng 11 2016

Ta có hình vẽ:

K A B C M K I N

a) Vì M là trung điểm của AB nên AM = BM = \(\frac{AB}{2}\)

Xét Δ AMK và Δ BMC có:

AM = BM (cmt)

AMK = BMC (đối đỉnh)

MK = MC (gt)

Do đó, Δ AMK = Δ BMC (c.g.c) (đpcm)

b) Vì N là trung điểm của AC nên AN = NC

Xét Δ ANI và Δ CNB có:

AN = NC (cmt)

ANI = CNB (đối đỉnh)

NI = NB (gt)

Do đó, Δ ANI = Δ CNB (c.g.c)

=> AI = BC (2 cạnh tương ứng) (đpcm)

c) Vì Δ AMK = Δ BMC (câu a) => AKM = MCB (2 góc tương ứng)

Mà AKM và MCB là 2 góc so le trong nên AK // BC (1)

Vì Δ ANI = Δ CNB (câu b) => IAN = NBC (2 góc tương ứng)

Mà IAN và NBC là 2 góc so le trong nên AI // BC (2)

Từ (1) và (2) => AK và AI trùng nhau hay 3 điểm I, A, K thẳng hàng (3)

Có: Δ AMK = Δ BMC (câu a) => AK = BC (2 cạnh tương ứng)

Mà AI = BC (câu b) => AK = AI (4)

Từ (3) và (4) => A là trung điểm của IK (đpcm)

2 tháng 11 2016

còn 1 bài nữa bn giúp mk nhé

soyeon_Tiểubàng giải

a: Xét ΔANE và ΔCNB có

NA=NC

\(\widehat{ANE}=\widehat{CNB}\)

NE=NB

Do đó: ΔANE=ΔCNB

Suy ra: \(\widehat{AEN}=\widehat{CBN}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//BC

b: Xét ΔAMD và ΔBMC có

MA=MB

\(\widehat{AMD}=\widehat{BMC}\)

MD=MC

Do đó: ΔAMD=ΔBMC

7 tháng 10 2021

Giúp e cde với ạ

loading...

a: Xét ΔAME và ΔBMC có

MA=MB

\(\widehat{AME}=\widehat{BMC}\)(hai góc đối đỉnh)

ME=MC

Do đó: ΔAME=ΔBMC

b: Xét ΔAFN và ΔCBN có

NA=NC

\(\widehat{ANF}=\widehat{CNB}\)(hai góc đối đỉnh)

NF=NB

Do đó: ΔAFN=ΔCBN

c: ΔAME=ΔBMC

=>\(\widehat{MAE}=\widehat{MBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//BC

d: ΔAME=ΔBMC

=>AE=BC

ΔANF=ΔCNB

=>\(\widehat{NAF}=\widehat{NCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AF//BC

ΔANF=ΔCNB

=>AF=CB

Ta có: AF=CB

AE=BC

Do đó: AE=AF

Ta có: AE//BC

AF//BC

AE,AF có điểm chung là A

Do đó: E,A,F thẳng hàng

mà AE=AF

nên A là trung điểm của EF

19 tháng 11 2016

1.

Xét tam giác AMB và tam giác NMC có:

AM = NM (gt)

AMB = NMC (2 góc đối đỉnh)

MB = MC (M là trung điểm của BC)

=> Tam giác AMB = Tam giác NMC (c.g.c)

Xét tam giác AMC và tam giác NMB có:

AM = NM (gt)

AMC = NMB (2 góc đối đỉnh)

MC = MB (M là trung điểm của BC)

=> Tam giác AMC = Tam giác NMB (c.g.c)

2.

Xét tam giác AME và tam giác BMC có:

AM = BM (M là trung điểm của AB)

AME = BMC (2 góc đối đỉnh)

ME = MC (gt)

=> Tam giác AME = Tam giác BMC (c.g.c)

=> AEM = BCM (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AE // BC

Xét tam giác ANF và tam giác CNB có:

AN = CN (N là trung điểm của AC)

ANF = CNB (2 góc đối đỉnh)

NF = NB (gt)

=> Tam giác ANF = Tam giác CNB (c.g.c)

=> AF = CB (2 cạnh tương ứng)

a: BC=căn 4^2+3^2=5cm

b: Xét ΔABC vuông tại A và ΔANM vuông tại A có

AB=AN

AC=AM

=>ΔABC=ΔANM

=>BC=NM

c: ΔANB vuông tại A có BA=AN

nên ΔANB vuông cân tại A

=>góc ANB=45 độ

ΔACM vuông tại A có AC=AM

nên ΔACM vuông cân tại A

=>góc ACM=45 độ=góc ANB

=>CM//NB

19 tháng 7 2017

 

a) Vì M1 và M2 là 2 góc đối đỉnh

   =>M1 = M2

   hay tam giác AMD = tam giác BMC

(Mình ko làm được xin lỗi bạn nha)