Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác IAE và ICB có:
IA = IC (gt)
Góc BIC = góc EIA (vì 2 góc đối đỉnh)
IB = IC (gt)
Suy ra: tam giác IAE = tam giác ICB (c.g.c)
Suy ra góc AEI = góc IBC (2 góc tương ứng)
mà 2 góc nằm ở vị trí so le trong
nên AE//BC
Bạn tự vẽ hình và viết GT;KL
Xét tam giác AIE và tam giác BIC có: AI=IC(I là trung điểm); BI=IE(gt); góc AIE=góc BIC(đối đỉnh)
suy ra tam giác AIE = tam giác CIB(c.g.c)
Suy ra AE=BC(2 cạnh tương ứng) ta có điều phải chứng minh
Chúc bạn học tốt!
CM : Xét tam giác AIE và tam giác CIB
có AI = CI (gt)
EI = BI(gt)
góc AIE = góc BIC (đối đỉnh)
=> tam giác AIE = tam giác CIB (c.g.c)
=> AE = BC ( hai cạnh tương ứng)
Xét tam giác AIE và tam giác CIB, ta có:
BI=IE (gt)
góc AIE=góc BIC
AI=IC (gt)
\(\Rightarrow\) tam giác AIE=tam giác CIB
\(\Rightarrow\)AE=BC ( 2 cạnh tương ứng)
b) Vì tam giác AIE=tam giác CIB nên
góc AEI=góc IBC ( 2 góc tương ứng) mà hai góc này ở vị trí so le trong nên AE//BC (đpcm)
a: Xét ΔAIB và ΔCID có
IA=IC
\(\widehat{AIB}=\widehat{CID}\)
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm của AC
I là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD//BC và AD=BC
c: Xét tứ giác AFCE có
AF//CE
AF=CE
Do đó: AFCE là hình bình hành
Suy ra: Hai đường chéo AC và FE cắt nhau tại trung điểm của mỗi đường
hay IE=IF
a: Sửa đề: Chứng minh ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
c: Xét ΔIAB và ΔICE có
IA=IC
\(\widehat{AIB}=\widehat{CIE}\)(hai góc đối đỉnh)
IB=IE
Do đó: ΔIAB=ΔICE
=>\(\widehat{IAB}=\widehat{ICE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
Ta có: AB//CE
AB//CD
CD,CE có điểm chung là C
Do đó: D,C,E thẳng hàng
Ta có: AB=CE(ΔIAB=ΔICE)
AB=CD(ΔIAB=ΔIDC)
Do đó: CE=CD
mà D,C,E thẳng hàng
nên C là trung điểm của DE
a) Xét tam giác AIE và tam giác BIC có :
IE = IB (gt)
AI = CI ( vì I là trung điem của AC)
góc AIE = góc BIC ( vì 2 góc đoi đinh)
Do đó tam giác AIE = tam giác BIC( c.g.c)
=> AE = BC ( 2 canh tương ứng )
b) vì tam giác AIE = tam giác BIC ( câu a)
=> góc C = góc A (2 góc so le trong)
=> AE // BC
a) Xét tam giác AIE và tam giác BIC có :
IE = IB (gt)
AI = CI ( vì I là trung điem của AC)
góc AIE = góc BIC ( vì 2 góc đoi đinh)
Do đó tam giác AIE = tam giác BIC( c.g.c)
=> AE = BC ( 2 canh tương ứng )
b) vì tam giác AIE = tam giác BIC ( câu a)
=> góc C = góc A (2 góc so le trong)
=> AE // BC
Xét tam giác IAE và ICB có
IA = IC ( gt)
góc BIC = góc EIA ( vì 2 góc đối đỉnh )
IB = IC (gt)
suy ra : tam giác IAE = tam giác ICB (c.g.c)
suy ra : góc AEI = góc IBC ( 2 góc tương ứng )
mà 2 góc nằm ở vị trí so le trong
nên AE // BC
xét TAM GIÁC BIC và TAM GIÁC AIE
BI=IE (GT)
IC=AI(GT)
GÓC BIC=GÓC EIA(đối đỉnh)
do đó tam giác BIC=EIA(c-g-c)
=>AE=BE(2 cạnh tương ứng)
=>AE//BC