K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2022

Có rồi đấy ạ

a: Xét ΔABE và ΔCFE có 

EA=EC

\(\widehat{AEB}=\widehat{CEF}\)

EB=EF

Do đó: ΔABE=ΔCFE

b: Xét tứ giác ABCF có

E là trung điểm của AC

E là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra; BC//AF

17 tháng 12 2021

b: Xét tứ giác BAFC có

E là trung điểm của BF

E là trung điểm của AC

Do đó: BAFC là hình bình hành

Suy ra: BC//AF

a: Xét ΔEAB và ΔECF có

EA=EC
góc AEB=góc CEF

EB=EF
=>ΔEAB=ΔECF

b: ΔEAB=ΔECF

=>AB=CF<BC

c: góc EBA=góc EFC

góc EFC>góc EBC

=>góc EBA>góc EBC

21 tháng 12 2021

b: Xét tứ giác ABFC có

E là trung điểm của AF

E là trung điểm của BC

Do đó: ABFC là hình bình hành

Suy ra: CF//AB

21 tháng 12 2021

b: Xét tứ giác ABFC có

E là trung điểm của BC

E là trung điểm của FA

Do đó: ABFC là hình bình hành

Suy ra: CF//AB

a: Xét tứ giác ACBE có

M là trung điểm chung của AB và CE

=>ACBE là hbh

=>AC=BE và AE//BC

b: Xét tứ giác AFCB có

N là trung điểm chung của AC và FB

=>AFCB là hình bình hành

=>AF//BC và AF=BC

c: AE=BC

AF=BC

=>AE=AF

d: AE//BC

AF//BC

=>E,A,F thẳng hàng

mà AE=AF

nên A là trung điểm của EF

a) Xét ΔADC và ΔEDB có 

\(\widehat{ACD}=\widehat{EBD}\)(hai góc so le trong, AC//BE)

DC=DB(D là trung điểm của BC)

\(\widehat{ADC}=\widehat{EDB}\)(hai góc đối đỉnh)

Do đó: ΔADC=ΔEDB(g-c-g)

a) Mk nghĩ bn cheps sai đề bài rùi!!! Phải là c/m: tam giác ABD = tam giác ACD chứ!!

Xét \(\Delta ABD\)và \(\Delta ACD\)có:

     AB = AC (gt)

     \(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{A}\))

      AD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)

b) Mk nghĩ bn lại sai đề bài!!! Làm sao c/m đc EF = AD??!!!! Đáng lẽ ra phải là EF = BD ms đúng chứ!!!!

Xét \(\Delta AEF\)và \(\Delta ADB\)có:

      AE = AD (gt)

      \(\widehat{EAF}=\widehat{DAB}\)(2 góc đối đỉnh)

       AF = AB (gt)

\(\Rightarrow\Delta AEF=\Delta ADB\left(c.g.c\right)\)

=> EF = DB (2 cạnh tương ứng)

c) Ta có: AF = AB, mà AC = AB

=> AF = AC

Xét \(\Delta AHF\)và \(\Delta AHC\)có:

       AF = AC (cmt)

       AH là cạnh chung

       HF = HC (H là trung điểm của FC)

\(\Rightarrow\Delta AHF=\Delta AHC\left(c.c.c\right)\)

\(\Rightarrow\widehat{FAH}=\widehat{CAH}\)(2 góc tương ứng)

=> AH là tia phân giác của \(\widehat{CAF}\)

d) 

11 tháng 12 2021

a: Xét ΔABC và ΔEFC có

CA=CE

FC=BC

AB=EF

Do đó: ΔABC=ΔEFC