Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
CD/CB=CE/CA
nên DE//AB và DE/AB=1/2
=>EM//BF và EM=BF
=>BEMF là hình bình hành
b: Vì BEMF là hình bình hành
nên BM cắt EF tại trung điểm của mỗi đường(1)
Vì AFDE là hình bình hành
nên AD cắt FE tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AD,BM,EF đồng quy
c: Xét tứ giác ADCM có
E là trung điểm chung của AC và DM
nên ADCM là hình bình hành
=>AD=CM
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
( Bạn tự vẽ hình nha )
a) Xét tứ giác AEDF có :
DE // AB
DF // AC
=> AEDF là hình bình hành ( dấu hiệu nhận biết )
Xét hình bình hành AEDF có :
AD là phân giác của góc BAC
=> EFGD là hình thoi ( dấu hiệu nhận biết )
b) XÉt tứ giác EFGD có :
FG // ED ( AF //ED )
FG = ED ( AF = ED )
=> EFGD là hình bình hành ( dấu hiệu nhận biết )
c) Nối G với I
+) XÉt tứ giác AIGD có :
F là trung điểm của AG
F là trung điểm của ID
=> AIGD là hình bình hành ( dấu hiệu nhận biết )
=> GD // IA hay GD // AK ( tính chất )
+) Xét tứ giác AKDG có :
GD // AK
AG // Dk ( AF // ED )
=> AKDG là hình bình hành ( dấu hiệu )
+) xtes hinhnf bình hành AKDG có :
AD và GK là 2 đường chéo
=> AD và GK cắt nhau tại trung điểm mỗi đường
Mà O là trung điểm của AD ( vì AFDE là hình thoi )
=> O là trung điểm của GK
=> ĐPCM
Xét tứ giác FGEB có :
FG//BE (gt)
GE//BF ( AB//GE , F ∈∈AB )
=> FGEB là hình bình hành
Vì FGEB là hình bình hành
=> FB = GE
Xét ∆ABC có :
F là trung điểm AB
E là trung điểm AC
=> FE là đường trung bình ∆ABC
=> FE //BC
Xét ∆ABC có :
E là trung điểm AC
D là trung điểm BC
=> ED là đường trung bình ∆ABC
=> ED//AB
Xét tứ giác FEDB có :
FE//BD ( FE//BC , D∈∈BC )
ED//FB ( ED//AB , F ∈∈AB )
=> FEDB là hình bình hành
=> FB = ED
Mà FB = GE (cmt)
=> FB = FA = GE = ED
Xét tứ giác AGEF có :
GE//FA (gt)
FA = GE (cmt)
=> AGEF là hình bình hành
a: Xét tứ giác BFGE có
BF//GE
BE//FG
=>BFGE là hbh
=>GE=BF
=>GE=AF
mà GE//AF
nên AGEF là hình bình hành
b: Xét ΔCAB cso CD/CB=CE/CA
nên DE//AB
=>D,E,G thẳng hàng
DE//AB
=>DE/AB=CD/CB=1/2
=>DE=AF=GE
=>E là trung điểm của DG
Xét tứ giác ADCG có
E là trung điểm chung của AC và DG
=>ADCG là hbh
=>CG=AD