Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét ΔBEC và ΔAEG có:
góc AEG = góc BEC ( đối đỉnh)
AE= AC ( E là trung điểm của AC)
BE= EG ( E là trung điểm của BG)
--> ΔBEC = ΔGEA ( c.g.c)
-->góc EBC = góc EGA ( hai góc tương ứng)
Vì GB cắt AG và BC tạo thành một cặp góc so le trong bằng nhau ( góc EBC = góc EGA)
--->AG // BC
Xét ΔBDC và ΔHDA có:
DB = DA ( D là trung điểm của AB )
DH = DC ( D là trung điểm của HC)
góc HDA = góc BDC ( đối đỉnh)
---> ΔBDC = ΔADH ( c.g.c)
--->góc H = góc DCB ( hai góc tương ứng)
vì HC cắt HA và BC tạo ra hai cặp góc so le trong bằng nhau (góc H = góc DCB)
--->HA // BC
Vì HA // BC
AG // BC
----> H, A, G thẳng hàng
xét ΔBEC và ΔAEG có:
góc AEG = góc BEC ( đối đỉnh)
AE= AC ( E là trung điểm của AC)
BE= EG ( E là trung điểm của BG)
--> ΔBEC = ΔGEA ( c.g.c)
-->góc EBC = góc EGA ( hai góc tương ứng)
Vì GB cắt AG và BC tạo thành một cặp góc so le trong bằng nhau ( góc EBC = góc EGA)
--->AG // BC
Xét ΔBDC và ΔHDA có:
DB = DA ( D là trung điểm của AB )
DH = DC ( D là trung điểm của HC)
góc HDA = góc BDC ( đối đỉnh)
---> ΔBDC = ΔADH ( c.g.c)
--->góc H = góc DCB ( hai góc tương ứng)
vì HC cắt HA và BC tạo ra hai cặp góc so le trong bằng nhau (góc H = góc DCB)
--->HA // BC
Vì HA // BC
AG // BC
----> H, A, G thẳng hàng
Xét tam giác HAD và tam giác BCD:
AD = BD (trung điểm)
D1 = D2 (đối đỉnh)
HD = DC (trung điểm)
=> tam giác HAD = tam giác CBD
=> góc H = góc C lớn
=> HA // BC (1)
Xét tương tự với tam giác AGE và tam giác EBC
=> tam giác AGE = tam giác EBC
=> G = B lớn
=> GA // BC (2)
Từ (1) và (2) => GA // BC (từ vuông góc - song song)
=> H, A, G thẳng hàng
Đã là tam giác ABC thì đương nhiên 3 điểm A; B; C không thẳng hàng
Xem lại đề bài
Đề sai rồi bạn. Đã cho ΔABC rồi thì làm sao A,B,C thẳng hàng được?
a: Xét ΔBEC và ΔCDB có
BE=CD
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đó: ΔBEC=ΔCDB
Suy ra: CE=DB
b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)
nên ΔGBC cân tại G
=>GB=GC
Ta có: GB+GD=BD
GE+GC=CE
mà BD=CE
và GB=GC
nên GD=GE
hay ΔGDE cân tại G
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: GB=GC
nên G nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,G,M thẳng hàng
Xét tứ giác AHBC có
D là trung điểm của AB
D là trung điểm của HC
Do đó: AHBC là hình bình hành
Suy ra: AH//BC
Xét tứ giác ABCG có
E là trung điểm của AC
E là trung điểm của BG
Do đó: ABCG là hình bình hành
Suy ra: AG//BC
Ta có: AH//BC
AG//BC
mà AH,AG có điểm chung là A
nên H,A,G thẳng hàng