Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
a: Xét ΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
b: BC=căn 3^2+4^2=5cm
Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=5/7
=>DC=20/7cm
a) Xét ΔBMN và ΔCMA có
\(\widehat{MBN}=\widehat{MCA}\)(hai góc so le trong, AC//NB)
\(\widehat{BMN}=\widehat{CMA}\)(hai góc đối đỉnh)
Do đó: ΔBMN∼ΔCMA(g-g)
b) Ta có: ΔBMN∼ΔCMA(cmt)
nên \(\dfrac{MN}{MA}=\dfrac{MB}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)(1)
Xét ΔABC có AM là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{AC}=\dfrac{BM}{CM}\)(Tính chất đường phân giác của tam giác)(2)
Từ (1) và (2) suy ra \(\dfrac{AB}{AC}=\dfrac{MN}{MA}\)(đpcm)
hình như bạn chép sai đề bài rồi.sao lại AB=6cm,AB=8cm là sao?
Đó chỉ là số đo thôi, bỏ qua nó đi. Câu a của mình là tính BC.
xét ΔABC và ΔDBN ta có
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{BDN}=90^o\)
=>ΔABC∼ΔDBN(g.g)
=>\(\dfrac{BA}{BD}=\dfrac{BC}{BN}\)
=>\(BA.BN=BD.BC\)