Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ \(\Delta ABC\)vuông tại A
Lúc đó: \(sina=\frac{AB}{BC}\Rightarrow sin^2a=\frac{AB^2}{BC^2}\)
\(cosa=\frac{AC}{BC}\Rightarrow cos^2a=\frac{AC^2}{BC^2}\)
\(\Rightarrow sin^2a+cos^2=\frac{AB^2+AC^2}{BC^2}=1\)(Áp dụng định lý Py - ta - go)
Vẽ \(\Delta ABC\)vuông tại A
Lúc đó \(tana=\frac{AC}{AB}\)
\(cota=\frac{AB}{AC}\)
\(\Rightarrow tana.cota=\frac{AC}{AB}.\frac{AB}{AC}=1\left(đpcm\right)\)
\(\frac{\cos a-\sin a}{cosa+sina}=\frac{\frac{cosa}{cosa}-\frac{sina}{cosa}}{\frac{cosa}{cosa}+\frac{sina}{cosa}}\)(chia ca tu va mau cho cosa)
\(=\frac{1-tana}{1+tana}=vt\left(dpcm\right)\)
\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^2a-cos^2a.sin^2a}{cos^2a-sin^2a.cos^2a}\)
\(=\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^2a.sin^2a}{cos^2a.cos^2a}=tan^4a\)
\(sin^4a+cos^4a=\left(sin^2a+cos^2a\right)^2-sin^2a.cos^2a=1-2sin^2a.cos^2a\)
a) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos a}\)
\(\Leftrightarrow\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=\sin^2\alpha\)
\(\Leftrightarrow1-\cos^2\alpha=\sin^2\alpha\)
\(\Leftrightarrow\sin^2\alpha+\cos^2\alpha=1\)( luôn đúng )
\(\Rightarrow\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}\)
a,Có sinα=\(\dfrac{AC}{BC}\)
cosα=\(\dfrac{AB}{BC}\)
sinα/cosα=AC/BC : AB/BC=AC/AB=tanα
b,Có tanα=AC/BC
cotα=BC/AC
tanα x cotα=AC/BC x BC/AC=1
a)Xét \(\Delta ABC\) vuông tại A
Ta có :\(\sin\alpha=\dfrac{AC}{BC}\)
\(\cos\alpha=\dfrac{AB}{BC}\)
\(\Rightarrow\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{\dfrac{AC}{BC}}{\dfrac{AB}{BC}}\)
\(\Rightarrow\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{AC}{BC}.\dfrac{BC}{AB}\)
\(\Rightarrow\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{AC}{AB}=\tan\alpha\)
b)Ta có: \(\tan\alpha=\dfrac{AC}{AB}\)
\(\cot\alpha=\dfrac{AB}{AC}\)
\(\Rightarrow\tan\alpha.\cot\alpha=\dfrac{AC}{AB}.\dfrac{AB}{AC}=1\)