K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

a. Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:

AC2 = HC . BC => HC = \(\frac{AC^2}{BC}\)= \(\frac{6^2}{12}\)= 3cm

=> BH = BC - HC = 12 - 3 = 9cm

b. Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:

AH2 = BH . HC = 2 . 5 = 10 => AH = \(\sqrt{10}\)cm

Xét ΔABH và ΔACH \(\left(\widehat{H}=90^o\right)\)theo định lí py - ta - go ta có:

\(AB=\sqrt{BH^2+AH^2}=\sqrt{2^2+\sqrt{10}^2}=\sqrt{14}cm\)

\(AC=\sqrt{HC^2+AH^2}=\sqrt{5^2+\sqrt{10^2}}=\sqrt{35}cm\)

c. Xét ΔAHC \(\left(\widehat{AHC}=90^o\right)\)theo định lí py - ta - go ta có:

\(AC=\sqrt{HC^2+AH^2}=\sqrt{3^2+4^2}=5cm\)

Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:

\(AH^2=HC.BH=>BH=\frac{AH^2}{HC}=\frac{4^2}{3}=\frac{16}{3}cm\)

\(AB=\sqrt{BH^2+AH^2}=\sqrt{\left(\frac{16}{3}\right)^2+4^2}=\frac{20}{3}cm\)

d. Ta có: \(\frac{AB}{AC}=\frac{3}{4}=>4AB=3AC< =>4.6=3AC< =>24=3AC< =>AC=8cm\)

Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo định lí py - ta - go ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10cm\)

Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}=>AH^2=\frac{576}{25}=23.04=>AH=\sqrt{23.04}=4,8cm\)

Xét ΔABH \(\left(\widehat{H}=90^o\right)\)theo định lí py - ta - go ta có:

\(BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4.8^2}=3,6cm\)

=> HC = BC - BH = 10 - 3,6 = 6,4cm

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

24 tháng 7 2018

A B C H

a)  ÁP dụng Pytago ta có:    AH2 + HB2 = AB2

                                       =>  AB2 = 62 + 4,52 =56,25

                                       =>  AB = 7,5

Áp dụng hệ thức lượng ta có:  AB2 = BH.BC

                                       =>  \(BC=\frac{AB^2}{BH}=12,5\)

=>   \(HC=BC-BH=12,5-4,5=8\)

Áp dụng hệ thức lượng ta có:

             \(AC^2=HC.BC\)

 =>   \(AC=\sqrt{HC.BC}=10\)

24 tháng 7 2018

b)  Áp dụng Pytago ta có:       AB2 = BH2 + AH2

                                          =>   AH2 = AB2 - BH2 = 27

                                          =>    \(AH=3\sqrt{3}\)

Áp dụng hệ thức lượng ta có:

     \(AH^2=BH.HC\)

=>  \(HC=\frac{AB^2}{BH}=12\)

=>  BC = HC + BH = 15

Áp dụng hệ thức lượng ta có:

       AC2 = HC.BC

=>  \(AC=\sqrt{HC.BC}=6\sqrt{5}\)

              

1 tháng 7 2019

a, AB = 7,5cm, AC = 10cm, BC = 12,5cm, HC = 8cm

b, AH = 3 3 cm;  P A B C = 18 + 6 3 c m ;  P A B H = 9 + 3 3 c m ;  P A C H = 9 + 9 3 c m

Bài 5: 

a) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\cot\widehat{C}\)

\(=21\cdot\cot40^0\)

\(\simeq25,03\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)

hay \(BC\simeq32,67\left(cm\right)\)

13 tháng 7 2019

AB=căn 4,5^2+6^2=7.5

13 tháng 7 2019

B, AH= căn 6^2-3^2=3 căn 3