Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC và tam giác ACD có:
AB=AC (gt)
^A1=^A2 (AD là tia phân giác của BC
AD chung
Suy ra: tam giác ABD =tam giác ACD(c.g.c)
VÌ tam giác ABD= tam giác ACD
Suy ra: BD=CD( hai cạnh tương ứng ) (1)
mà D1+D2( kề bù )
D1+D2=180 độ chia 2=90 độ
suy ra:AD vuông góc với BC(2)
Từ 1 và 2 suy ra:
AD là trung trực của BC
b) LẦN SAU
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Cho hình bình hành MNPQ. Biết MN//PQ, MQ//NP. Chứng minh rằng MN=PQ, MQ=NP, góc Q=góc N
a) Xét ▲ABD và ▲ACD có:
\(\widehat{BAD}=\widehat{CAD}\) (AD là đường phân giác của \(\widehat{BAC}\))
AB=AC (▲ABC cân tại A).
AD là cạnh chung.
=>▲ABD = ▲ACD (c-g-c)
=> BD=CD (2 cạnh tương ứng) hay D là trung điểm BC. (1)
\(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng)
Mà \(\widehat{ADB}+\widehat{ADC}=180^0\) (kề bù)
=>\(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD⊥BC tại D (2)
- Từ (1) và (2) suy ra: AD là đường trung trực của BC.
b) Xét ▲AIF và ▲AIE có:
\(\widehat{FAI}=\stackrel\frown{EAI}\) (AI là đường phân giác của \(\widehat{FAE}\) )
AF=AE (gt)
AI là cạnh chung.
=>▲AIF = ▲AIE (c-g-c)
=>\(\widehat{AFI}=\widehat{AEI}\) (2 góc tương ứng)
Mà\(\widehat{AEI}=90^0\)(BE⊥AC tại E)
=>\(\widehat{AFI}=90^0\) hay IF⊥AB tại F.
c) Xét ▲ABC có:
AD là đường cao (AD⊥BC tại I)
BE là đường cao (BE⊥AC tại E)
AD cắt BE tại I (gt)
=> I là trực tâm của ▲ABC.
=>CI⊥AB mà IF⊥AB (cmt)
=>CI trùng với IF hay C,I,F thẳng hàng.
Bạn
có
thể vẽ hình đc ko mk ko bt vẽ trên máy tính rồi mk giải cho
a)Xét tam giác ABD và tam giác ACB có:
AB=AC(GT)
góc DAC= góc BAD (GT)
AD là cạnh chung
Do đó tam giác ABD = tam giác ACB (c.g.c)
vì AB = AC => Tam giác ABC cân tại A
mà AD là tia p/g của góc A ( gt)
=> Ad đồng thời là đường trung trực của BC
nha em