Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
1: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
a) Xét tam giác AHD và tam giác ABH có:
Góc A chung
\(\widehat{ADH}=\widehat{AHB}\left(=90^o\right)\)
\(\Rightarrow\Delta AHD\sim\Delta ABH\left(g-g\right)\)
\(\Rightarrow\frac{AH}{AB}=\frac{AD}{AH}\Rightarrow AH^2=AB.AD\)
b) Ta có tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
Vậy thì \(\widehat{DHA}=\widehat{DEA}\)
Lại có \(\widehat{DHA}=\widehat{CBA}\) nên \(\widehat{DEA}=\widehat{CBA}\)
Suy ra \(\Delta ADE\sim\Delta ACB\left(g-g\right)\)
c) Gọi I là giao điểm của AO và DE.
Xét tam giác vuông ABC có AO là trung tuyến ứng với cạnh huyền nên OA = OC hay \(\widehat{OAC}=\widehat{OCA}\)
Lại có \(\widehat{AED}=\widehat{ABC}\) nên \(\widehat{OAC}+\widehat{DEA}=\widehat{OCA}+\widehat{ABC}=90^o\)
Suy ra \(\widehat{AIE}=90^o\) hay \(AO\perp DE\)
d) Ta có do \(AO\perp DE\) nên:
\(S_{ADOE}=\frac{1}{2}DE.OA=\frac{1}{2}AH.\frac{BC}{2}=\frac{1}{2}a.AH\)
Vậy thì \(S_{ADOE}\) lớn nhất khi AH lớn nhất.
Xét tam giác vuông ABC, ta có
\(BC.AH=AB.AC\le\frac{AB^2+AC^2}{2}=\frac{BC^2}{2}=2a^2\)
\(\Rightarrow AH\le a\)
Vậy AH lớn nhất khi AH = a tức là tam giác ABC vuông cân tại A.
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/. Gọi K là giao điểm của EF và AM, J là giao điểm của EF và AH
CM: góc AEK = góc ABC
Vì J là giao điểm của 2 đường chéo trong hcn AEHF => ẠJ = JH = Ẹ = JF
=> tam giác EJA cân tại J => AEJ = EAH (1)
Xét tam giác vuông ABH => EAH +ABC = 90
Xét tam giác vuông ABC=> ABC + ACB = 90
=> EAH = ACB và (1) => ACB = AEJ (2)
Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = BM = MC
=> tam giác ABM cân tại M => EAK = ABC (3)
Xét tam giác EAK: có: AEJ + EAK = ACB + ABC = 90 ( do 2 và 3)
=> tam giác AEK vuong tại K
Hay AM vuông EF
4/. Vì A đới xứng với I qua BC => AI vuông góc với BC . Mà AH vuong với BC => A. H , I thẳng hàng . hay H là trung điểm của AI
Xét tam giác AID, có:
H là trung ddierm của AI, M là trung điểm của AD
=> HM là đường trung bình của tam giác AID => HM // ID
=> tứ giác BIDC là hình thang
Xét tam giác ABI , có: BH vừa là đường cao vừa là đường trung tuyến => ABI cân tại B => IBH = ABH (BH là đường phân giác) (4)
Xét tứ giác ABCD có:
M là trung điểm BC
M là trung điểm AD
M = BC giao AD
=> ABCD là hình bình hành và A = 90 => ABCD là hình chữ nhật
=> DCB = ABC (DC // AB và solle trong) (5)
Từ 4 và 5 => BCD = IBC (= ABC) => Hình thang BIDC là hình thang cân
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/.