K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

Trong tam giác ABC có : ABC + ACB + BAC = 180 => ABC + ACB = 120 

mà BD , CE lần lượt là phân giác của ABC , ACB => 2IBC + 2ICB = 120 <=> IBC + ICB = 60 

Có : DIE+DIC = 180 ( kề bù ) mà DIC = IBC + ICB = 60 ( góc ngoài của tam giác IBC ) 

=> DIE = 120 và DIE + BAC = 180 => AEID nội tiếp

18 tháng 5 2021

Mình đến trễ mong undefinedbạn thông cảm lời giải đây ạundefined

14 tháng 3 2022

 

Ta có CE là tia phân giác của ACB

=> góc ACE= góc BCE

=>  cung AE= cung BE

Ta có BD là tia phân giác góc ABC 

=> góc ABD= góc DBC

=> cung AD= cung DC

Ta có  góc AMN=( cung AD+ EB)

           góc ANM=( cung DC+ AE)

mak cung AE= cung BE và cung AD= cung DC

=> góc AMN= góc ANM=> tam giác AMN cân

Ta có BD là đường phân giác thứ 1 (gt)

          CE là đường phân giác thứ 2(gt)

mak BD giao CE tại I

=> I là trọng tâm

=> AI là đường phân giác thứ 3

=> góc BAI= góc IAC 

Ta có góc IAD= góc IAC+góc CAD

mak góc IAC=góc BAI(cmt) và góc CAD= góc ABI(vì góc CAD chắn cung DC và góc ABI chắn cung AD mak cung AD= cung DC (cmt) )

=>góc IAD=góc BAI+góc ABI(1)

Ta cso góc AID là góc ngoài của tam giác ABI

=> góc AID= góc BAI+góc ABI(2)

từ (1) và (2) =>góc IAD= góc AID

=> tam giác AID cân

14 tháng 3 2022

Tớ làm lại nha cái kia bị lỗi với lại là cậu tự vẽ hình nha tớ vẽ hình gửi vào đây nó bị lỗi k hiện á

Ta có CE là tia phân giác của ACB

=> góc ACE= góc BCE

=>  cung AE= cung BE

Ta có BD là tia phân giác góc ABC 

=> góc ABD= góc DBC

=> cung AD= cung DC

Ta có  góc AMN=\(\dfrac{1}{2}\)( cung AD+ EB)

            góc ANM=\(\dfrac{1}{2}\)( cung DC+ AE)

mak cung AE= cung BE và cung AD= cung DC

=> góc AMN= góc ANM=> tam giác AMN cân

Ta có BD là đường phân giác thứ 1 (gt)

          CE là đường phân giác thứ 2(gt)

mak BD giao CE tại I

=> I là trọng tâm

=> AI là đường phân giác thứ 3

=> góc BAI= góc IAC 

Ta có góc IAD= góc IAC+góc CAD

mak góc IAC=góc BAI(cmt) và góc CAD= góc ABI(vì góc CAD chắn cung DC và góc ABI chắn cung AD mak cung AD= cung DC (cmt) )

=>góc IAD=góc BAI+góc ABI(1)

Ta cso góc AID là góc ngoài của tam giác ABI

=> góc AID= góc BAI+góc ABI(2)

từ (1) và (2) =>góc IAD= góc AID

=> tam giác AID cân

          

30 tháng 6 2015

b)

 + Xét đt (o) có

      tứ giác BFACN nội tiếp đt

    \(\rightarrow ABC\)=AFC ( 2 góc nt cùng chắn cung AC)

    

  CÓ :  

      BD là tiếp tuyến đt (o) tại B(gt)

       \(\rightarrow\) BD vuông góc BO (TC tiếp tuyến)

       \(\rightarrow\)BD vuông góc BC (O thuộc BC)

        \(\rightarrow\) DBC = 90(dn)

        \(\rightarrow\)tam giác DBC vuông tại B

        xét tam giác vuông DBC cso

          BDC+DCB=90(2 góc phụ nhau trong tg vuông)        (1)

        +Xét đt (o) có: 

             BAC= 90 ( góc nt chắn nửa dtđk BC)
              \(\rightarrow\)tam giác BAC vuông tại A

          Xét tam giác vuông BAC có

                ABC+ACB=90 (2 gọc phụ nhau trong tam giác vuông)

              \(\rightarrow\) ABC+DCB=90(A thuộc DC )                                 (2)

                từ(1) và(2) \(\rightarrow\) BDC=ABC( cùng phụ DCB)

                                       Mà AFC=ABC(CMT) 

                                \(\rightarrow\) BDC=AFC(=ABC)

          +Có :

                 AFC+AFE=180( 2 góc kề bù)

               Mà 2 góc ở vị trí đối nhau 

             \(\rightarrow\) tứ giác DEFA nội tiếp ( DHNB tứ giác nội tiếp)                        

   
 

      

  

 

a: Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BCDE là tứ giác nội tiếp

b: Xét ΔDHC vuông tại D và ΔDAB vuông tại D có 

\(\widehat{HCD}=\widehat{ABD}\)

Do đó: ΔDHC\(\sim\)ΔDAB

Suy ra: DH/DA=DC/DB

hay \(DH\cdot DB=DA\cdot DC\)