Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh CM=BN :AM = CN (gt)AC = BC ( cạnh tam giác đều)CAM^ = BCN^ = 60*=> Δ ACM = Δ CBN (c.g.c)=> CM = BN
b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CNΔ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi
AM = CN (gt)
AC = BC ( cạnh tam giác đều)
CAM^ = BCN^ = 60*
=> Δ ACM = Δ CBN (c.g.c)
=> CM = BN
b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CN
Δ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^
=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*
=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi
a) Xét:
AM = CN (gt)
AC = BC ( cạnh tam giác đều)
CAM^ = BCN^ = 60 độ
=> Δ ACM = Δ CBN (c.g.c)
=> CM = BN
b) Vì:
Δ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^
=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60 độ
=> BOC^ = 180 độ - (CBN^ + BCM^) = 180 độ - 60 độ = 120 độ không đổi
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)
em moi hocl o p6
a) Chứng minh CM=BN :
AM = CN (gt)
AC = BC ( cạnh tam giác đều)
CAM^ = BCN^ = 60*
=> Δ ACM = Δ CBN (c.g.c)
=> CM = BN
b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CN
Δ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^
=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*
=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120