Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác OCDB có
\(\widehat{OBD}+\widehat{OBC}=180^0\)
Do đó: OCDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc BDH+góc BFH=180 độ
=>BDHF nội tiếp
góc BFC=góc BEC=90 dộ
=>BFEC nội tiếp
b: góc FEB=góc BAD
góc DEB=góc FCB
mà góc BAD=góc FCB
nên góc FEB=góc DEB
=>EB là phân giác của góc FED
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>FE vuông góc OA
=>OA vuông góc IK
A) Vì AD và BD là 2 tiếp tuyến của đt ( O)
=> Góc DAO = góc DBO =90
Xét tứ giác ADBO có
Góc DAO + góc DBO = 90+90 = 180
=> Tứ giác ADBO nội tiếp
b)Xét tam giác BDM và tam giác CBD có
- Góc D chung
- Góc DBM = góc BCD ( cùng chắn cung BM )
=> Tam giác BDM đồng dạng với tam giác CBD
=> \(\frac{BD}{CD}=\frac{DM}{BD}\)
=>\(BD^2=DM.DC\)
Ta có \(BD^2=BD.BD\)
Mà BD = AD ( 2 tiếp tuyến cắt nhau )
=>\(BD^2=AD.BD\)
Thay vào ta được
\(AD.BD=DM.DC\)
C) Ta có tam giác ABC cân tại A => AB = AC
=> cung AB = cung AC
=> góc DAB = góc ABC ( góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp chắn các cung bằng nhau )
Mà 2 góc ở vị trí so le trong
=> AD song song BC
=> góc ADC = góc DCB ( 2 GÓC SO LE TRONG )
Mà góc DCB = góc DBM
=> Góc DBM = Góc ADC
..... Đúng thì ủng hộ nha ....
có \(\widehat{AEH}=90\)
\(\widehat{AFH}\)=90
\(\widehat{AEH}+\widehat{AFH}=90+90=180\) tổng 2 góc đối nhau
⇒ tứ giác AEHF là tứ giác nội tiếp
Bài này khá căn bản thôi do tam giác ABC đều
`=>hatA=hatB=hatC=60^o`
`\hat{BOC}` là góc ở tâm nên gấp 2 lần góc nội tiếp
`=>hat{BOC}=2hatA=120^o`
Vì `hat{OBM}=hat{OCM}=90^o`(do các tt lần lượt lại B,C)
`hat{BOC}+hat{OBM}+hat{OCM}+hat{BMC}=360^o`( đây là tứ giác)
`=>hat{BMC}=360^o-(hat{BOC}+hat{OBM}+hat{OCM}+hat{BMC})=60^o`
ΔABC đều ⇒∠A=∠B=∠C=60
⇒∠BOC=2∠A=2.60=120
mà ∠BOC+∠BMC=180 (∠B=∠C=90)
⇒∠BMC=180-∠BOC=180-120=60
⇒∠BMC=60