K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Xét ΔABCΔABC là tam giác đều (gt)

=> {ABCˆ=ACBˆ=BACˆAB=AC=BC{ABC^=ACB^=BAC^AB=AC=BC (tính chất tam giác đều)

Có : ⎧⎩⎨⎪⎪D∈ABE∈BCF∈AC{D∈ABE∈BCF∈AC (gt)

=> ⎧⎩⎨⎪⎪AB=AD+BDAC=CF+CFBC=BE+CE{AB=AD+BDAC=CF+CFBC=BE+CE

Mà : {AD=BE=CFAB=AC=BC{AD=BE=CFAB=AC=BC (cmt)

=> BD=AF=CEBD=AF=CE

Xét ΔADF;ΔBEDΔADF;ΔBED có :

AF=BD(cmt)AF=BD(cmt)

DAFˆ=EBDˆDAF^=EBD^ (gt)

AD=BE(cmt)AD=BE(cmt)

=> ΔADF=ΔBED(c.g.c)ΔADF=ΔBED(c.g.c)

=> DF=DEDF=DE (2 cạnh tương ứng) (1)

Xét ΔADF;ΔCEFΔADF;ΔCEF có :

AF=EC(cmt)AF=EC(cmt)

DAFˆ=FCEˆDAF^=FCE^ (tam giác ABC đều - gt)

DA=FC(cmt)DA=FC(cmt)

=> ΔADF=ΔCEF(c.g.c)ΔADF=ΔCEF(c.g.c)

=> DF=EFDF=EF ( 2 cạnh tương ứng) (2)

- Từ (1) và (2) => DF=DE=EFDF=DE=EF

Xét ΔDEFΔDEF có :

DF=DE=EFDF=DE=EF (cmt)

=> ΔDEFΔDEF là tam giác đều (đpcm)

17 tháng 11 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: AB = AD +DB (1)

BC = BE + EC (2)

AC = AF + FC (3)

AB = AC = BC ( vì tam giác ABC là tam giác đều) (4)

AD = BE = CF ( giả thiết) (5)

Từ (1), (2), (3) và (4),(5) suy ra: BD = EC = AF

Xét ΔADF và ΔBED, ta có:

AD = BE (gt)

∠A =∠B =60o (vì tam giác ABC đều)

AF = BD (chứng minh trên)

suy ra: ΔADF= ΔBED (c.g.c)

⇒ DF=ED (hai cạnh tương ứng) (6)

Xét ΔADF và ΔCFE, ta có:

AD = CF (gt)

∠A =∠C =60o (vì tam giác ABC đều)

AF = CE (chứng minh trên)

suy ra: ΔADF= ΔCFE (c.g.c)

Nên: DF = FE (hai cạnh tương ứng) (7)

Từ (6) và (7) suy ra: DF = ED = FE

Vậy tam giác DFE đều

31 tháng 8 2016

A B C D E F

\(\Delta ABC\)đều (gt) nên AB = BC = AC ; góc A = góc B = góc C = 600 mà AD = BE = CF (gt)

=> AB - AD = BC - BE = AC - CF <=> BD = CE = AF

\(\Delta ADF,\Delta BED\)có AD = BE (gt) ; góc DAF = góc EBD = 600 (cmt) ; AF = BD (cmt) nên\(\Delta ADF=\Delta BED\left(c.g.c\right)\)

=> DF = ED (2 cạnh tương ứng) (1)

\(\Delta ADF,\Delta CFE\)có AD = CF (gt) ; góc DAF = góc FCE = 600 (cmt) ; AF = CE (cmt) nên\(\Delta ADF=\Delta CFE\left(c.g.c\right)\)

=> DF = FE (2 cạnh tương ứng) (2).Từ (1) và (2),ta có DF = FE = ED.Vậy\(\Delta DEF\)đều

6 tháng 4 2020

. Cho tam giác ABC, Các tia phân giác của các góc B và C cắt nhau tại I Qua I kẻ đường thẳng song song với BC cắt AB tại M và AC tại N. Chứng minh rằng MN = BM + CN

Hình tự vẽ

Xét 3 tam giác \(ADF,BED,CFE\),ta có:

\(AD=BE=CF\)(gt )

\(\widehat{A}=\widehat{B}=\widehat{C}\)(gt)

DB=EC=AD ( do các cạnh của tam giác đều ABC - các cạnh AD,BE,FC = nhau )

=>3 tam giác \(ADF,BED,CFE\)=nhau

=> DE=DF=FE

=> tam giác DEF đều

P/s tham khảo nha

13 tháng 1 2018

A B C D E F

Ta có: AB=BC=CA (t/g ABC đều)

AD=BE=CF

=>BD=CE=AF

Xét t/g ADF và t/g BED có:

AD=BE (gt)

góc A=góc B = 60 độ (gt)

AF=BD (cmt)

=>t/g ADF = t/g BED (c.g.c)

=>DF = DE (1)

Xét t/g ADF và t/g CFE có:

AD = CF (gt)

góc A=góc C = 60 độ (gt)

AF = CE (cmt)

=>t/g ADF = t/g CFE (c.g.c)

=> DF = EF (2)

Từ (1) và (2) => DF = DE = EF => t/g DEF đều 

30 tháng 10 2019

AB=AC=BC

AD=BE=CF
=>BD=EC=AF

Xet ΔADF và ΔBED có

AD=BE

góc A=góc B

AF=BD

=>ΔADF=ΔBED

=>DF=ED

Xét ΔADF và ΔCFE có

AD=CF
góc A=góc C

AF=CE
=>ΔADF=ΔCFE
=>DF=FE=ED

=>ΔDEF đều

A B C E F D

hình chỉ minh họa thôi nhé mk sẽ giải cho 

3 tháng 3 2016

vì AD=BE=CF nên AD,BE,CF là đường cao là trung trực là tung tuyến phân giác mà 3 đường cao đi qua 1 điểm , điểm này cách đều D,E,F nên tam giác DEF là tam giac đều 

29 tháng 5 2017

A B C D E F

Ta có AB = BC = CA, AD = BE = CF

nên AB - AD = BC - BE = CA - CF hay BD = CE = AF.

\(\Delta ABC\) đều \(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

Xét hai tam giác ADF và BED có:

BD = AF (cmt)

\(\widehat{A}=\widehat{B}\left(cmt\right)\)

BE = AD (gt)

Vậy: \(\Delta ADF=\Delta BED\left(c-g-c\right)\)

\(\Rightarrow\) DF = DE (hai cạnh tương ứng)

Xét hai tam giác EBD và FCE có:

BD = CE (cmt)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

BE = CF (gt)

Vậy: \(\Delta EBD=\Delta FCE\left(c-g-c\right)\)

\(\Rightarrow\) DE = EF (hai cạnh tương ứng)

Do đó DF = DE = EF. Vậy \(\Delta DEF\) là tam giác đều.

25 tháng 12 2017

Gânbabbajs

10 tháng 11 2019

AB=AC=BC

AD=BE=CF
=>BD=EC=AF

Xet ΔADF và ΔBED có

AD=BE

góc A=góc B

AF=BD

=>ΔADF=ΔBED

=>DF=ED

Xét ΔADF và ΔCFE có

AD=CF
góc A=góc C

AF=CE
=>ΔADF=ΔCFE
=>DF=FE=ED

=>ΔDEF đều

AB=AC=BC

AD=BE=CF
=>BD=EC=AF

Xet ΔADF và ΔBED có

AD=BE

góc A=góc B

AF=BD

=>ΔADF=ΔBED

=>DF=ED

Xét ΔADF và ΔCFE có

AD=CF
góc A=góc C

AF=CE
=>ΔADF=ΔCFE
=>DF=FE=ED

=>ΔDEF đều