K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam giác ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

1
29 tháng 9 2016

khó quá đi à

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam iacs ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

0
31 tháng 5 2019

Hình tự vẽ nha bạn :>

Xét ΔABCΔABC có AO = OB = OC

⇒ΔABC⇒ΔABC có trung tuyến AO ứng với một cạnh và = 1212 cạnh ấy

⇒ΔABC⇒ΔABC vuông ⇒BACˆ=90o⇒BAC^=90o

Dễ dàng c/m tứ giác ADHEADHE là hcn (Aˆ=Dˆ=EˆA^=D^=E^ =1v)

⇒EH=AD⇒EH=AD

Theo HTL, ta có :

{AB.BE=BH2AC.EH=AC.AD=AH2{AB.BE=BH2AC.EH=AC.AD=AH2

⇒AB.EB+AC.EH=BH2+AH2=AB2⇒AB.EB+AC.EH=BH2+AH2=AB2(đpcm)Hình tự vẽ nha bạn :>

Xét ΔABCΔABC có AO = OB = OC

⇒ΔABC⇒ΔABC có trung tuyến AO ứng với một cạnh và = 1212 cạnh ấy

⇒ΔABC⇒ΔABC vuông ⇒BACˆ=90o⇒BAC^=90o

Dễ dàng c/m tứ giác ADHEADHE là hcn (Aˆ=Dˆ=EˆA^=D^=E^ =1v)

⇒EH=AD⇒EH=AD

Theo HTL, ta có :

{AB.BE=BH2AC.EH=AC.AD=AH2{AB.BE=BH2AC.EH=AC.AD=AH2

⇒AB.EB+AC.EH=BH2+AH2=AB2⇒AB.EB+AC.EH=BH2+AH2=AB2(đpcm)

14 tháng 10 2017

chắc bạn xem bộ đó rồi

14 tháng 10 2017

ý bạn là j

27 tháng 6 2021

A B C M D E 1 1 1 1 2

a) Do ΔABC đều => AB = BC = AC = a; \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

Xét ΔBDM vuông tại D có: MD = MB.sin\(\widehat{B}\) = MB.sin60o = MB.\(\dfrac{\sqrt{3}}{2}\)

                                           BD = MB.cos\(\widehat{B}\) = MB.cos60o = \(\dfrac{1}{2}\).MB

ΔCEM vuông tại E có: ME = MC.sin\(\widehat{C}\) = MC.sin60o = MC.\(\dfrac{\sqrt{3}}{2}\)

                                     EC = MC.cos\(\widehat{C}\) = MC.cos60o = \(\dfrac{1}{2}\).MC

=> Chu vi tứ giác ADME là:

AD + AE + MD + ME = (AB - BD) + (AC - CE) + MB.\(\dfrac{\sqrt{3}}{2}\) + MC.\(\dfrac{\sqrt{3}}{2}\)

                                  = AB + AC - (BD + CE) + \(\dfrac{\sqrt{3}}{2}\)(MB + MC)

                                  = AB + AC - \(\dfrac{1}{2}\).(MB + MC) +   \(\dfrac{\sqrt{3}}{2}\)(MB + MC)

                                   = AB + AC + \(\dfrac{\left(\sqrt{3}-1\right)}{2}\).BC

                                   = a + a + \(\dfrac{\left(\sqrt{3}-1\right)}{2}\).a = \(\dfrac{3+\sqrt{3}}{2}\).a

Do a không đổi => chu vi tứ giác ADME không đổi 

b) Xét ΔBMD vuông tại D => \(\widehat{M_1}=90^o-\widehat{B}=90^o-60^o=30^o\)

ΔCME vuông tại E => \(\widehat{M_2}=90^o-\widehat{C}=90^o-60^o=30^o\) => 

Tứ giác BDEC nội tiếp đường tròn ⇔ \(\widehat{E_2}=\widehat{B}=60^o\)

Mà \(\widehat{B}=\widehat{C}=60^o\) (cmt) => \(\widehat{E_2}=\widehat{C}\). Mà 2 góc ở vị trí đồng vị => DE // BC

=> \(\left\{{}\begin{matrix}\widehat{D_1}=\widehat{M_1}=30^o\\\widehat{E_1}=\widehat{M_2}=30^o\end{matrix}\right.\)(hai góc so le trong)

=> \(\widehat{D_1}=\widehat{E_1}\left(=30^o\right)\)

=> ΔMDE cân tại M => MD = ME

=> \(\dfrac{\sqrt{3}}{2}\).MB = \(\dfrac{\sqrt{3}}{2}\).MC => MB = MC => M là trung điểm của BC

Vậy để tứ giác BDEC nội tiếp thì M là trung điểm của BC