Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
434
AI TICK GIÙM MÌNH MỘT CÁI ĐI MÀ LÀM ƠN ĐÓ!!!!!!!!!!!!!!!!!!!!!!!
1: Xét ΔABC có DE//BC
nên AE/AC=AD/AB
=>AE/8=1/3
=>AE=8/3(cm)
2:
Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE/10=1/3
=>DE=10/3(cm)
Xét tứ giác BDEF có
BD//EF
BF//DE
Do đó: BDEF là hình bình hành
=>BF=DE=10/3(cm)
3:
AD/AB=1/3
AE/AC=1/3
DE/BC=1/3
Do đó: AD/AB=AE/AC=DE/BC
a. Xét tam giác ABC có:
DE//BC (gt)
=>\(\dfrac{DA}{DB}=\dfrac{EA}{EC}\)(định lý Ta-let) (1)
Xét tam giác ADE có:
AD//CF (gt)
=>\(\dfrac{EA}{EC}=\dfrac{DE}{EF}\)(định lý Ta-let) (2)
Từ (1) và (2) suy ra:\(\dfrac{DA}{DB}=\dfrac{ED}{FE}\)
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Xét tam giác ABC có BD là đường phân giác trong của tam giác ABC (gt)
\(\Rightarrow\frac{AD}{DC}=\frac{AB}{BC}\)( tc)
\(\Rightarrow\frac{AD}{DC}=\frac{3}{5}\)
\(\Rightarrow\frac{AD}{3}=\frac{DC}{5}=\frac{AD+DC}{3+5}=\frac{AC}{8}=\frac{8}{8}=1\)( tc của dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{cases}}\)
b) Xét tứ giác BMDN có \(\hept{\begin{cases}MD//BN\left(MD//BC,N\in BC\right)\\ND//MB\left(ND//AB,M\in AB\right)\end{cases}}\)\(\Rightarrow BMND\)là hình bình hành ( dhnb) (3)
Xét tam giác ABC có: \(MD//BC\left(gt\right)\)
\(\Rightarrow\frac{AD}{AC}=\frac{MD}{BC}\)( hệ quả của định lý Ta-let)
\(\Rightarrow\frac{3}{8}=\frac{MD}{10}\)
\(\Rightarrow MD=3,75\left(cm\right)\left(1\right)\)
Xét tam giác ABC có \(ND//AB\left(gt\right)\)
\(\Rightarrow\frac{DC}{AC}=\frac{ND}{AB}\)( hệ quả của định lý ta-let)
\(\Rightarrow\frac{5}{8}=\frac{ND}{6}\)
\(\Rightarrow ND=3,75\left(cm\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow ND=MD\) (4)
Từ (3) và (4) \(\Rightarrow BMDN\)là hình thoi (dhnb)
c) \(S_{BMDN}=4.3,75=15\left(cm\right)\)