Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Joen Jungkook - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
a: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEF là hình bình hành
Suy ra: BD=EF
b: Xét ΔADE và ΔEFC có
\(\widehat{ADE}=\widehat{EFC}\)
AD=EF
\(\widehat{A}=\widehat{FEC}\)
Do đó: ΔADE=ΔEFC
c: Ta có: BDEF là hình bình hành
nên Hai đường chéo BE và DF cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của DF
nên M là trung điểm của BE
hay B,M,E thẳng hàng
Câu hỏi của Joen Jungkook - Toán lớp 7 - Học toán với OnlineMath
a) EF là đường trung bình => EF = 1/2 AB
mà BD = 1/2 AB => BD = EF
b) chứng minh giống trên => DE = CF
mà AD = EF và AE = EC => tam giác ADE = tam giác EFC
c) DE = BF và DE // BF
=> BDEF là hình bình hành
=> BE cắt DF tại trung điểm mỗi đường
mà M là trung điểm DF
=> M là trung điểm BE
=> B,M,E thẳng hàng
A B D F C E
a) *Xét ΔEFD và ΔFDB có:
\(\left\{{}\begin{matrix}DF.l\text{à}.c\text{ạnh}.chung\\\widehat{BDF}=\widehat{EFD}\left(2.g\text{óc}.so.le.trong.do.AB//EF\right)\\\widehat{BFD}=\widehat{EDF}\left(2.g\text{óc}.so.le.trong.do.DE//BC\right)\end{matrix}\right.\)
\(\Rightarrow\Delta EFD=\Delta FBD\left(g-c-g\right)\)
⇒ BD = EF (hai góc tương ứng)
Mà \(\left\{{}\begin{matrix}AD=BD\left(gt\right)\\BD=EF\left(cmt\right)\end{matrix}\right.\)
⇒ AD = EF
b) *Ta có: \(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{DBF}\left(2.g\text{óc}.so.le.trong.do.DE//BC\right)\\\widehat{DBF}=\widehat{EFC}\left(2.g\text{óc}.so.le.trong.do.AB//EF\right)\end{matrix}\right.\)
⇒ \(\widehat{ADE}=\widehat{EFC}\)
*Xét \(\Delta ADE\) và \(\Delta EFC\) có:
\(\left\{{}\begin{matrix}AD=EF\left(cmt\right)\\\widehat{ADE}=\widehat{EFC\left(cmt\right)}\\\widehat{DAF}=\widehat{FEC}\left(\text{đ}\text{ồng}.v\text{ị}.do.AB//EF\right)\end{matrix}\right.\)
⇒ ΔADE = ΔEFC (g-c-g)
A D E B F C a)Nối D với F. Xét \(\Delta BDF\) và \(\Delta FDE\) ta có:
\(\widehat{BDF}=\widehat{DFE}\) (so le trong (Vì AB//EF (gt)))
DF cạnh chung
\(\widehat{DFB}=\widehat{FDE}\) (so le trong (Vì DE//BC (gt)))
\(\Rightarrow\Delta BDF\)\(=\Delta FDE\) (g.c.g)
\(\Rightarrow DB=EF\) (2 cạnh tương ứng )
Mà \(DB=DA\) (D là trung điểm AB)
Suy ra AD=EF
b)Xét \(\Delta ADE\) và \(\Delta EFC\:\) ta có:
\(\widehat{ADE}=\widehat{CFE}\) (\(=\widehat{BAC}\); đồng vị của DE//BC và EF//AB)
\(AD=EF\) (cmt)
\(\widehat{DAE}=\widehat{FEC}\) (đồng vị của DE//BC)
\(\Rightarrow\Delta ADE=\Delta EFC\) (g.c.g)
c)Vì \(\Delta ADE=\Delta EFC\) (cmt)
Suy ra \(AE=EC\) (2 cạnh tương ứng )
a: Xét tứ giác BDEF có
DE//BF
EF//BD
Do đó: BDEF là hình bình hành
=>BD=EF
b: Xét ΔADE và ΔEFC có
AD=EF
góc ADF=góc EFC
góc A=góc FEC
Do đó: ΔADE=ΔEFC
c: Vì BDEF là hình bình hành
nên BE cắt DF tại trung điểm của mỗi đường
=>B,M,E thẳng hàng
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE
a: Xét tứ giác BDEF có
DE//BF
BD//EF
Do đó: BDEF là hình bình hành
Suy ra: FE=BD
hay FE=AD