K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

a) thì CM tam giác AED=tam giác MEC(c-g-c)=>MC=DA<=>MC=1/2AB

b) vì 2 tam giác trên bằng nhau =>CM//AB( tự cm so le trong nhé) và CM=AD(2 góc tương ứng rùi tự suy ra CM=BD)=>góc DCM=góc BDC ( so le trong) => tam giác DCM=tam giác DMB( c-g-c)=> DE//BC( góc DCM=góc BDC=> so le trong) rùi DM=BC( mà DE=EM ) nên DE=1/2BC

20 tháng 7 2017

a)Xét \(\Delta DEC\)\(\Delta FEA\)có:

EC=AE(E là trung điểm của AC)

\(\widehat{CED}=\widehat{AEF}\)(2 góc đối đỉnh)

DE=FE(gt)

=>\(\Delta DEC=\Delta FEA\left(c-g-c\right)\)

=>FA=DC(2 cạnh tương ứng)

b)Vì \(\Delta DEC=\Delta FEA\)=>\(\widehat{FAE}=\widehat{ECD}\)

Mà 2 góc này ở vị trí so le trong=>FA//DC

=>\(\widehat{FAD}=\widehat{CDB}\)(2 góc đồng vị)

Xét \(\Delta ADF\)\(\Delta DBC\)có:

FA=DC(theo phần b)

\(\widehat{FAD}=\widehat{CDB}\)(cmt)

AD=DB(D là trung điểm của AB)

=>DF=BC                             ;            \(\widehat{ADF}=\widehat{DBC}\)

\(DF=2DE\)           ;            Mà 2 góc này ở vị trí đồng vị

=>\(BC=2DE\)             ;            =>DE//BC

=>DE=\(\frac{1}{2}BC\)

Vậy DE=\(\frac{1}{2}\)BC;DE//BC

10 tháng 7 2023

???

10 tháng 7 2023

ghi nhầm 

a) Xét ΔAEF và ΔCED có 

AE=CE(E là trung điểm của AC)

\(\widehat{AEF}=\widehat{CED}\)(hai góc đối đỉnh)

EF=ED(gt)

Do đó: ΔAEF=ΔCED(c-g-c)

⇒AF=CD(hai cạnh tương ứng)

b) Xét ΔABC có 

D là trung điểm của AB(gt)

E là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒DE//BC và \(DE=\dfrac{1}{2}BC\)(Định lí 2 về đường trung bình của tam giác)

7 tháng 2 2021

Dùng kiến thức lớp 7

3 tháng 7 2016

A B C E D F

3 tháng 7 2016

a) Xét \(\Delta\)DEB và \(\Delta\)FEC:

ED = EF

DEB^ = FEC^ (đđ)

EB = EC 

=> \(\Delta\)DEF = \(\Delta\)FEC (c.g.c)

2 câu sau thấy kì kì

7 tháng 12 2021

Help mk nha. Mk đang cần để nộp bài 15 phút ^^

 

Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC

a) Xét ΔAED và ΔCEF có 

EA=EC(E là trung điểm của AC)

\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)

ED=EF(gt)

Do đó: ΔAED=ΔCEF(c-g-c)

⇒AD=CF(hai cạnh tương ứng)

mà AD=BD(D là trung điểm của AB)

nên CF=BD(đpcm)

Ta có: ΔAED=ΔCEF(Cmt)

nên \(\widehat{ADE}=\widehat{CFE}\)(hai góc tương ứng)

mà \(\widehat{ADE}\) và \(\widehat{CFE}\) là hai góc ở vị trí so le trong

nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song)

hay CF//AB(đpcm)

 

25 tháng 1 2022

a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm) a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm)

a) Ta có: ΔDBC vuông tại D(BD⊥AC tại D)

mà DO là đường trung tuyến ứng với cạnh huyền BC(O là trung điểm của BC)

nên \(DO=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)