\(\widehat{C}\)= \(^{60^o}\), hai đường c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vẽ đường kính CM

\(MA\perp AC\)(\(\Delta MAC\)nội tiếp)

\(BE\perp AC\)(giả thiết)

\(\Rightarrow\)\(MA//BH\) (1)

\(MB\perp BC\)(\(\Delta MBC\)nội tiếp)

\(AH\perp BC\)(giả thiết)

\(\Rightarrow\)\(MB//AH\)(2)

Từ (1)(2):

\(\Rightarrow\)\(MAHB\)là hình bình hành.

\(\Rightarrow\)\(AH=BM\)

Do\(\widehat{BAC}=60^0\)

\(\Rightarrow BC=R\sqrt{3}\)

Áp dụng địn lí Pytago vào \(\Delta BMC\)

\(BM^2+BC^2=MC^2\)

\(\Leftrightarrow\)\(BM^2=4R^2-3R^2\)

\(\Leftrightarrow\)\(BM^2=R^2\)

\(\Leftrightarrow\)\(BM=\sqrt{R^2}=R\)

\(\Rightarrow\)\(AH=BM=R\)

Mà \(AO=\frac{2R}{2}=R\)

\(\Rightarrow\)\(AH=AO\)

\(\Rightarrow\)\(\Delta AHO\)cân tại \(A\)(ĐPCM)

17 tháng 4 2020

a) Xét (O) có :

AB là tiếp tuyến tại B

AC là tiếp tuyến tại C 

AB cắt AC tại A

\(\Rightarrow\widehat{ABO}=\widehat{ACO}=90^o\)và OA là p/g \(\widehat{BOC}\)

Xét tg ABOC có \(\widehat{ABO}+\widehat{ACO}=180^o\)Mà 2 góc này đối nhau

\(\Rightarrow\)ABOC là tg nt

b) Xét (O) có 

\(\widehat{ABE}\)là góc tạo bởi tiếp tuyến AB và dây BE

\(\widehat{BDE}\)là góc nt chắn cung BE

\(\Rightarrow\widehat{ABE}=\widehat{BDE}=\frac{1}{2}sđ\widebat{BE}\)

Xét \(\Delta ABEvà\Delta ADB:\)

\(\widehat{BAD}\)chung

\(\widehat{ABE}=\widehat{BDE}\)

\(\Rightarrow\Delta ABE\infty\Delta ADB\left(gg\right)\)

\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AD.AE\)

c) Vì OA là p/g \(\widehat{BOC}\Rightarrow\widehat{BOA}=\widehat{COA}=\frac{\widehat{BOC}}{2}\)

Do ABOC là tg nt\(\Rightarrow\widehat{BOA}=\widehat{BCA}\)(cùng chắn cung AB)

Suy ra \(\widehat{AOC}=\widehat{ACB}\)

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc AFE=góc ACB

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>FE vuông góc AO

3 tháng 5 2019
https://i.imgur.com/jEdEx2p.jpg
3 tháng 5 2019

Ôn tập góc với đường tròn