Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a, Xét ▲ABC và ▲MDC có:
∠CAB=∠DMC (=90o)
∠DCB chung
=> ▲ABC∼▲MDC (g.g)
b, Xét ▲MBI và ▲ABC có:
∠CAB=∠IMB (=90o)
∠ABC chung
=> ▲MBI∼▲ABC (g.g)
=> \(\dfrac{BI}{BC}=\dfrac{BM}{BA}\) => BI.BA=BM.BC
c, Xét ▲ADB và ▲KIB có:
∠DAB=∠CKB (=90o)
∠DBA chung
=> ▲ADB∼▲KIB (g.g)
=>\(\dfrac{BA}{KB}=\dfrac{DB}{BI}\) => BA.BI=KB.DB
Xét ▲DKC và ▲IAC có:
∠DKC=∠IAC (=90o)
∠DCK chung
=> ▲DKC∼▲IAC (g.g)
=>\(\dfrac{CK}{AC}=\dfrac{DC}{CI}\) => CK.CI=DC.AC
Ta có: BA.BI=KB.DB nên BA.BI ko thay đổi khi M thay đổi
CK.CI=DC.AC nên CK.CI ko thay đổi khi M thay đổi
nên BI.BA+CI.CK ko phụ thuộc vào vị trí của điểm M
d, Xét ▲BMA và ▲BIC có:
\(\dfrac{BA}{BM}=\dfrac{BC}{BI}\) (cmc, b)
∠ACB chung
=> ▲BMA ∼▲BIC (c.g.c)
=> ∠BAM=∠BCI
Xét ▲CAI và ▲BKI có:
∠CAI=∠BKI (=90o)
∠AIC=∠KIB (đ.đ)
=> ▲CAI ∼▲BKI (g.g)
=> \(\dfrac{IA}{IC}=\dfrac{IK}{IB}\)
Xét ▲IAK và ▲ICB có:
\(\dfrac{IA}{IC}=\dfrac{IK}{IB}\) (cmt)
∠AIK=∠CIB (đ.đ)
=> ▲IAK ∼▲ICB (g.g)
=> ∠KAB=∠BCI
mà ∠BAM=∠BCI
nên ∠KAB=∠BAM hay AB là tia p/g của ∠MAK (đpcm)
a,Ta có ΔABC cân ở góc A => góc ABC=góc ACB =180(độ)−BAC2(1)
Ta có BD=CE(gt);AB=AC(gt)
mà AB+BD=AD và AC+CE=AE
=> AD=AE
=>ΔADE cân tại A ( Có hai góc bằng nhau)
=>góc ADE= góc AED=(180 độ - DAE) :2 (2)
Từ (1) và (2) => góc ABC= góc ADE=góc ACB=góc AED
mà góc ABC và góc ADE ở vị trí đồng vị
=>BC // DE(đpcm)
b)ta có góc ABC= góc MBD (đối đỉnh )
góc ACB= góc NCE( đối đỉnh )
mà Góc ABC=Góc ACB => góc MBD= góc NCE
Xét hai tam giác vuông ΔBMD và ΔCNE
có BD=CE (gt)
góc MBD= góc NCE (c/m trên)
=>ΔBMD=ΔCNE(Cạnh huyền - Góc nhọn)
=> DM=EN(Hai cạnh tương ứng)
c) Gọi giao điểm của AM và BI là E
giao điểm của AN và CI là F
Vì ΔBMD=ΔCNE( chứng minh trên ) =>BM=CN( Hai cạnh tương ứng)
Ta có : Góc ABC= Góc ACB ( gt)
mà Góc ABC + Góc ABM=180 độ ( kề bù)
và Góc ACB+góc ACN= 180 độ ( kề bù)
=>Góc ABM=góc ACN
Xét ΔABM VÀ ΔACN có:
AB=AC(gt)
Góc ABM=Góc ACN(cmt)
BM=CM ( cmt)
=> ΔABM=ΔACN(c−g−c)
=> Góc AMB=Góc ANC (hai góc tương ứng )
=> ΔAMN Cân ở A ( có hai góc bằng nhau) (đpcm)
D,(hơi dài )
ta có tam giác AMN cân ở A=> AM=AN( hai cạnh bên) (3)
Xét hai tam giác vuông Tam giác EMB và tam giác FCN có:
Góc EMB=góc FNC (cmt)
MB=CN(cmt)
=> tam giác EMB= tam giác FNC ( cạnh huyền -góc nhọn)
=>EM=FN(hai cạnh tương ứng ) (4)
Ta có (3) (4) mà AE+EM=AM và AF+FN=AN
=> AE=AF
Xét hai tam giác vuông tam giác AEI và tam giác AFI có
AI cạnh chung
AE=AF(cmt)
=> tam giác AEI = Tam giác AFI (cạnh huyền-cạnh góc vuông)
=>Góc AIE=Góc AIF( góc tương ứng ) (10)
ta có góc EBM+MBD=góc EBD= góc ABI (đối đỉnh)(5)
góc FCN+NCE= Góc FCE= góc ACI( đối đỉnh )(6)
mà góc EBM= góc FCN (cmt)(7)
góc MDB=góc NCE(gt) (8)
từ (5)(6)(7)(8)=> góc ABI = góc ACI (9)
từ (9) (10)=> góc BAI=góc CAI ( tổng 3 góc của một tam giác ) (đpcm)
Chúc bạn học giỏi nha Thiên Yết >.<
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )