Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ MP//CF, P thuộc AP
=> FN là đường trung bình tg AMP
=> AF=FP
MP cũng là đường trung bình tg BFC
=> BP=PF
=> AF=PF=BP=1/3AB
=> S(ANF) = 1/3S(ABN) =1/6S(ABM) =1/12S(ABC) =S/12
c/m tương tự S(ANE) =S/12
=> S(AFNE) = S/6
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM vừa là đường phân giác vừa là đường cao
b: Xét ΔABC có
AM là đường trung tuyến
AO=2/3AM
Do đó: O là trọng tâm của ΔABC
=>BO là đường trung tuyến ứng với cạnh AC
hay E là trung điểm của AC
c: Ta có: O là trọng tâm của ΔABC
mà CO cắt BA tại F
nên F là trung điểm của AB
Xét ΔABE và ΔACF có
AB=AC
\(\widehat{BAE}\) chung
AE=AF
Do đó: ΔABE=ΔACF
Suy ra: BE=CF
a, xet tam giac ABM va tam giac ACM co
AB = AC ( tam giac ABC can)
goc ABM = goc ACM (tam giac ABC can)
BM = MC ( AM la duong trung tuyen)
suy ra tam giac ABM = tam giac ACM (c.g.c)
b,ta co BM=MC=1/2BC
suy ra BM = 1/2.6=3
ta co AM = AB + BM = 5+3 = 8