Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. MN = ?
Trong ΔABC có:
M là trung điểm AB (gt)
N là trung điểm AC (gt)
⇒ MN là đường trung bình ΔABC
⇒ MN = 1/2BC (t/c)
Mà BC = 6cm (gt)
⇒ MN=BC/2=6/2=3(cm)
b. C/m: BMNC là hình thang cân
Có MN là đường trung bình ΔABC
⇒ MN//BC
⇒ BMNC là hình thang
Mà góc ABC = góc ACB (ΔABC cân tại A)
⇒ BMNC là hình thang cân (DHNB)
c. C/m: ABCK là hình bình hành
Xét tứ giác ABCK có:
N là trung điểm AC (gt)
N là trung điểm BK (K đ/x với B qua M)
⇒ ABCK là hình bình hành (DHNB)
d. C/m: AHBP là hình chữ nhật
Xét tứ giác AHBP có:
M là trung điểm AB (gt)
M là trung điểm PH ( H đ/x với P qua M)
⇒ AHBP là hình bình hành (DHNB)
Có ΔABC cân tại A
⇒ AP là trung tuyến đồng thời là đg cao
⇒ góc APB = 90 độ
⇒ AHBP là hình chữ nhật (DHNB)
a) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay \(MN=\dfrac{8}{2}=4\left(cm\right)\)
Xét tứ giác ACNM có NM//AC(cmt)
nên ACNM là hình thang có hai đáy là NM và AC(Định nghĩa hình thang)
Hình thang ACNM có \(\widehat{CAM}=90^0\)(gt)
nên ACNM là hình thang vuông(Định nghĩa hình thang vuông)
b) Xét tứ giác ABDC có
N là trung điểm của đường chéo BC(gt)
N là trung điểm của đường chéo AD(gt)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
mà \(\widehat{CAB}=90^0\)(gt)
nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}\)
hay BC=8(cm)
bạn làm nột mik đc ko cảm ơn bạn nhá!!!