Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tam giác ABD và tam giác HBD có:
BD chung
Góc BAD=BHD=90 độ
ABD=HBD(Phân giác góc B)
=> Tam giác ABD=HBD(ch-gn)
=> AD=DH(cạnh tương ứng)
b/ Xét trong tam giác DCH có DC là cạnh huyền
=> DC>DH
MÀ DH=AD
=> AD<DC
c/ Xét tam giác ADK và tam giác HDC có:
DAK=DHK=90 độ
ADK=HDC(đối đỉnh)
AD=DH(câu a)
=> Tam giác ADK=tam giác HDC(c-g-c)
=> DK=DC(cạnh tương ứng)
=> tam giác KDC cân tại D
a, xét tam giác vuông AIB và tam giác vuông AIC có:
AI chung
AB=AC => tam giác AIB=tam giác AIC (cạnh huyền - cạnh góc vuông)
=>góc BAI=góc CAI (2 goc tương ứng)
=>AI là tia phân giác góc BAC
a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông ACH, ta có:
AH là cạnh chung
AB=AC (gt)
Do đó: \(\Delta\)ABH=\(\Delta\)ACH (c.h-c.g.v)
\(\Rightarrow\) BH=HC (2 cạnh tương ứng)
Vậy BH=HC=BC:2=3cm
b) Áp dụng định lý PI-TA-GO vào \(\Delta\)vuông ABH, ta có:
\(AH^2+BH^2=AB^2\)
\(AH^2+3^2=5^2\)
\(AH^2=16\)
\(AH=4cm\)
c) Ta có: \(\widehat{A}_1=\widehat{A_2}\) (\(\Delta ABH=\Delta ACH\))
\(\Rightarrow\) AH là đường phân giác. (*)
Ta lại có: BH=CH (c/m trên)
\(\Rightarrow\) AH là đường trung tuyến. (**)
Từ (*) và (**), ta có:
AH thoả mãn 2 trong 4 loại đường.
\(\Rightarrow\) AH vừa là đường trung trực, trung tuyến, đường cao, phân giác
a: Xét ΔADI vuông tại I và ΔAHI vuông tạiI có
AI chung
DI=HI
Do đó: ΔADI=ΔAHI
b: Xét ΔAHB và ΔADB có
AH=AD
góc HAB=góc DAB
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: góc AHB=góc DHB=90 độ
hay AD vuông góc với BD
c: \(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
DO đó; ΔABD cân tại A
b: Ta có: \(\widehat{MCB}=90^0-\widehat{CDM}\)
\(\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{ADH}=90^0-\widehat{CDM}\)
=>góc MCB=góc ACB
hay CB là phân giác của góc AMC
c: Xét ΔCAQ có
CH là đường phân giác
CH là đường cao
Do đó: ΔCAQ cân tại C
a) △ABC cân tại A ⇒ AB = AC
△ABH vuông tại H có \(AB^2=AH^2+HB^2\\ \Rightarrow AB=AC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b) △ABH và △ACH có:
\(\widehat{AHB}=\widehat{AHC}=90^o\\ AH:\text{cạnh chung}\\ AB=AC\)
\(\Rightarrow\text{△ABH = △ACH (cạnh huyền - cạnh góc vuông)}\)
a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=8^2+6^2=100\)
hay AB=10(cm)
Ta có: AB=AC(ΔABC cân tại A)
mà AB=10cm(cmt)
nên AC=10cm
Vậy: AB=10cm; AC=10cm
b) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
vif AH |
tôi biết cậu ko phải là Noo Phước Thịnh mà!!!!!!