K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔBC'C vuông tại C'

=>C' nằm trên đường tròn đường kính BC

=>OC'=OB=OC(2)

ΔB'BC vuông tại B'

=>B' nằm trên đường tròn đường kính BC

=>OB'=OB=OC(1)

Từ (1),(2) suy ra OC'=OB=OC=OB'

hay (O;OB') đi qua B,C,C'

  

a:

góc ABA'=góc ACA'=1/2*180=90 độ

Xét ΔBOA' có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBOA' cân tại B

mà OB=OA'

nên ΔBOA' đều

=>góc A'BH=30 độ

=>góc ABC=60 độ

Xét ΔACB có

AH vừa là đường cao, vừa là trung tuyến

góc ABC=60 độ

=>ΔACb đều

b: ΔOBA' đều có BH là đường cao

nên BH=OA'*căn 3/2=R*căn 3/2

=>CH=R*căn 3/2

=>BC=R*căn 3

=>DC=căn DB^2-BC^2=R

DH=căn DC^2+CH^2=R*căn 7/2

a: góc HBC+góc HCB=90 độ-góc ACB+90 độ-góc ABC=góc BAC

=>góc BHC+góc BAC=180 độ

H đối xứng K qua BC

=>BH=BK và CH=CK

Xét ΔBHC và ΔBKC có

BH=BK

CH=CK

BC chung

=>ΔBHC=ΔBKC

=>góc BKC=góc BHC

=>góc BKC+góc BAC=180 độ

=>ABKC nội tiếp

b: Gọi Ax là tiếp tuyến của (O) tại A

=>góc xAC=góc ABC=góc AEF

=>EF//Ax

=>EF vuông góc OA

c: Xét tứ giác BHCA' có

BH//CA'

BA'//CH

=>BHCA' là hbh

=>H,I,A' thẳng hàng

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

26 tháng 3 2021

vẽ hình hộ mik vs

 

1 tháng 5 2021

Bạn nào lướt qua thì giúp mình phần c với nha :v hơi bí phần c

1 tháng 5 2021

chứng minh cho DE sog sog vs A'C = cách cm 2 góc SLT ∠EDC=∠DCA'

đến đó tự lm i

31 tháng 5 2021

a) Dễ thấy A, H, K thẳng hàng.

Ta có \(\widehat{KCB}=\widehat{HCB}=90^o-\widehat{ABC}=\widehat{KAB}\).

Suy ra tứ giác ACKB nội tiếp.

b) \(\widehat{ABD}=\widehat{AA'C};\widehat{ADB}=\widehat{ACA'}=90^o\Rightarrow\Delta ABD\sim\Delta AA'C\left(g.g\right)\Rightarrow\widehat{BAD}=\widehat{A'AC}\)

\(\Rightarrow\widehat{AA'C}=90^o-\widehat{ABC}=90^o-\widehat{AEF}\Rightarrow AA'\perp EF\)

c) Ta có BH // A'C (do cùng vuông góc với AC), CH // A'B (do cùng vuông góc với AB) nên tứ giác BHCA' là hình bình hành. Suy ra H, I, A' thẳng hàng.

d) Do OI là đường trung bình của tam giác A'AH nên OI // AH,\(\dfrac{OI}{AH}=\dfrac{1}{2}=\dfrac{IG}{AG}\Rightarrow\) H, G, O thẳng hàng và \(\dfrac{OG}{HG}=\dfrac{1}{2}\). Từ đó \(S_{AHG}=2S_{AOG}\) (đpcm) 

30 tháng 4 2022

xin hình vẽ