Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Xét \(\Delta ABC\) cân tại A:
AM là đường trung tuyến (M là trung điểm của cạnh đáy BC).
\(\Rightarrow\) AM là đường cao (Tính chất tam giác cân).
\(\Rightarrow AM\perp BC.\Rightarrow\widehat{AMC}=90^o.\)
Xét \(\Delta AMC\) và \(\Delta MNC:\)
\(\widehat{AMC}=\widehat{MNC}\left(=90^o\right).\\ \widehat{ACM}chung.\)
\(\Rightarrow\Delta AMC\sim\Delta MNC\left(g-g\right).\)
2/ \(\Delta AMC\sim\Delta MNC\left(cmt\right).\)
\(\Rightarrow\dfrac{AM}{MN}=\dfrac{MC}{NC}\) (2 cạnh tương ứng).
\(\Rightarrow AM.NC=MN.MC.\)
Ta có: \(MN=2OM\) (O là trung điểm của MN).
\(MC=\dfrac{1}{2}BC\) (M là trung điểm của BC).
\(\Rightarrow AM.NC=2OM.\dfrac{1}{2}BC.\)
\(\Rightarrow AM.NC=OM.BC.\)
a: Xét ΔMAB có MI là phân giác
nên AI/IB=AM/MB=AM/MC
Xét ΔAMC có MK là phân giác
nên AK/KC=AM/MC
=>AI/IB=AK/KC
=>IK//BC
b: Xét ΔABM có IO//BM
nên IO/BM=AO/AM
Xét ΔACM có OK//MC
nên OK/MC=AO/AM
=>IO/BM=OK/MC
mà BM=CM
nên IO=OK
Hướng dẫn : Gọi K là giao điểm của BH vs AC. Tam giác ABK có AH vừa là đường cao vừa là phân giác nên cân tại A => AK = AB = 12 cm
=> KC = AC - AK = 18 - 12 = 6cm
Mặt khác AH cũng là trung tuyến nên H là trung điểm BK, mà M là trung điểm BC => HM là đường trung bình của tg BCK
=> HM = KC/2 = 6/2 = 3cm
góc amc=150 độ á bạn