K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trong tam giác ABC có AH = 1/2 BC.  Đường cao ứng với cạnh huyền và bằng 1/2 => tam giác ABC vuông tại góc A

Lại có góc  A = 90 độ , góc C = 75 độ 

Trong tam giác tổng 3 góc là 180 độ 

=> góc B = 180 - góc A - góc C

                =  180-90-75

                 = 15 độ

Vậy........ 

1 tháng 2 2016

câu 1: 

100 cm

 

15 tháng 2 2017

có ai giải được ko ngày mai dự giờ rồi. bài 2

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

30 tháng 7 2018

a, \(\Delta ABC\)và \(\Delta HBA\)có:

\(\widehat{ABC}=\widehat{AHB}=90^o\)

\(\widehat{BAC}\) chung

\(\Rightarrow \Delta ABC \sim \Delta HBA\) (g-g) 

b, Ta có: \(\Delta ABC \sim \Delta HBA\) (g-g) \(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)\(\Rightarrow AB.AC=AH.BC\)

c, \(\Delta ABC\)có: \(\widehat{BAC}=90^o\)

\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)

hay \(10^2=6^2+AC^2\)

       \(AC^2=64\)

       \(AC=8\left(cm\right)\)

Ta có: \(\frac{AC}{AH}=\frac{BC}{AB}\left(cmt\right)\Leftrightarrow\frac{8}{AH}=\frac{10}{6}\Leftrightarrow AH=4,8\left(cm\right)\)

\(\Delta AHC\)có: \(\widehat{AHC}=90^o\)

\(\Rightarrow AC^2=AH^2+HC^2\)(định lý Py-ta-go)

hay \(8^2=4,8^2+HC^2\)

       \(HC^2=40,96\)

       \(HC=6,4\left(cm\right)\)

Mong mn giúp mk làm phần in đậm , mk cần gấp ạ. Xin cảm ơn!!!Bài 1 Cho tam giác ABC, trung tuyến AD, biết AB = 4cm, AC = 8cm. Qua B dựng đường thắng cắt AC tại F sao cho góc ABF bằng góc ACB. a) Chứng tỏ tam giác ABF và tam giác ACB đồng dạng. Tính độ dài đoạn CFb) Chứng tỏ diện tích tam giác ABC bằng hai lần diện tích tam giác ADCc) Gọi 0 là giao điểm của BF và AD, CO cắt AB tại E. Từ A và C lần...
Đọc tiếp

Mong mn giúp mk làm phần in đậm , mk cần gấp ạ. Xin cảm ơn!!!

Bài 1 Cho tam giác ABC, trung tuyến AD, biết AB = 4cm, AC = 8cm. Qua B dựng đường thắng cắt AC tại F sao cho góc ABF bằng góc ACB. 

a) Chứng tỏ tam giác ABF và tam giác ACB đồng dạng. Tính độ dài đoạn CF

b) Chứng tỏ diện tích tam giác ABC bằng hai lần diện tích tam giác ADC

c) Gọi 0 là giao điểm của BF và AD, CO cắt AB tại E. Từ A và C lần lượt dựng các đường | thẳng song song với BF cắt CO tại J và cắt AD tại I.

 + Chứng tỏ FC/FA  = CI/JA

 + Chứng tỏ DB/DC  = FC/FA = EA/EB=1

 Bài 2: Cho hình chữ nhật ABCD, kẻ AH vuông góc với đường chéo BD

 a) Chứng minh tam giác AHD và tam giác DCB đồng dạng và BC.BC = DH.DB

 b) Gọi S là trung điểm của BH, R là trung điểm của AH. 

Chứng minh SH.BD = SR.DC 

c) Gọi T là trung điểm của DC. Chứng minh tứ giác DRST là hình bình hành

d) Tính góc AST

 

 

2
8 tháng 4 2020

câu 2d

 Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)

⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA

Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA

Vậy ∠AST = 90o

...

Chúc bạn học tốt 

8 tháng 4 2020

câu 1d

+ ΔACI có BF//CI→ FC/FA=OI/AO

IΔCOI có AJ//CI (//BF)→  CI/AJ=OI/AO

→FC/FA=CI/AJ

1 tháng 4 2020

B H M A C N

( Hình ảnh chỉ mang tính chất minh họa )

a) Tính BC và AH :

Tam giác ABC vuông tại A, áp dụng định lý Pytago vào tam giác ABC :

AB2+AC2=BC2AB2+AC2=BC2

82+152=BC282+152=BC2

BC=17(cm)⇒BC=17(cm)

Ta có : SABC=12ABAC=12AHBCSABC=12⋅AB⋅AC=12⋅AH⋅BC

AH=ABACBC=81517=12017(cm)⇔AH=AB⋅ACBC=8⋅1517=12017(cm)

b) Có Aˆ=900A^=900(giả thiết), Mˆ=900M^=900(hình chiếu), Nˆ=900N^=900(hình chiếu)

=> Tứ giác AMHN là hình chữ nhật (tứ giác có 3 góc bằng 90 độ).

Vì tứ giác AMHN là hình chữ nhật => Hai đường chéo bằng nhau.

MN=AH=12017(cm)⇒MN=AH=12017(cm)

c) Vì N là hình chiếu của H trên AC NAC⇒N∈AC

mà MHMH//AN(hcn)AN(hcn) => MHMH//ACAC

Theo hệ quả của định lý Ta-let => AMAB=ANACAMAB=ANAC

Suy ra : AMAC=ANAB(đpcm)