Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Xét tam giác ABD và tam giác EBD
Ta có: BA = BE ( giả thiết )
\(\widehat{ABD}=\widehat{DBE}\)( BD là tia phân giác của góc ABC )
BD là cạnh chung
=> Tam giác ABD = tam giác EBD ( c.g.c )
=> DA = DE ( hai cạnh tương ứng )
Vậy DA = DE
b) Vì tam giác ABD = tam giác EBD
=> Góc BAD = góc BED ( hai góc tương ứng )
Mà góc BAD = 90o
=> BED = 90o
Vậy góc BED = 90o
Câu c) lỗi.
# Chúc bạn học tốt #
a,xét tam giac ABD và tam giac EBD có
BD chung
góc ABD = góc DBE(vì BDlà phân giác của góc ABE)
BA=BE(gt)
Do đó tam giác ABD bằng tam giác EBD(c.g.c)
suy ra DA=DE(2 cạnh tương ứng)
b,vì tam giac ABD=tam giác DBE=>góc a bằng góc BED
mà góc A=90 độ=>Góc BED=90độ
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
b: Ta có: ΔBAD=ΔBED
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
AD=ED
AF=EC
Do đó: ΔADF=ΔEDC
Suy ra: \(\widehat{ADF}=\widehat{EDC}\)
=>\(\widehat{ADF}+\widehat{ADE}=180^0\)
=>E,F,D thẳng hàng
B C D A E F
a) Xét ΔADB và ΔEDB có:
BA = BE ( giả thiết )
Góc ABD = EBD ( BD là tia phân giác của góc ABE )
BD cạnh chung.
=> ΔADB = ΔEDB ( c.g.c )
=> DA = DE ( 2 cạnh tương ứng )
b) Vì ΔADB = ΔEDB nên góc DAB = DEB = 90 độ ( 2 góc tương ứng).
Ta có hình vẽ:
A F B C D E a/ Trong tam giác ABC có:
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=1800 (tổng 3 góc của tam giác)
900 + 600 + \(\widehat{C}\) = 1800
=> \(\widehat{C}\) = 1800 - 900 - 600 = 300
Ta có: \(\widehat{B}\)=600, BD là phân giác góc B
=> \(\widehat{ABD}\)=\(\widehat{EBD}\)=300
b/ Xét tam giác ABD và tam giác EBD có:
BA = BE (GT)
\(\widehat{ABD}\)=\(\widehat{EBD}\) (GT)
BD : cạnh chung
Vậy tam giác ABD = tam giác EBD (c.g.c)
=> DA = DE (2 cạnh tương ứng)
c/ Xét tam giác BAD và tam giác FAD có:
AD: cạnh chung
AB = AF (GT)
\(\widehat{BAD}\)=\(\widehat{FAD}\) = 900
Vậy tam giác BAD = tam giác FAD (c.g.c)
=> tam giác BAD = tam giác FAD = EBD
Trong tam giác ABD có:
\(\widehat{BAD}\)+\(\widehat{ABD}\)+\(\widehat{BDA}\) = 1800
900 + 300 + \(\widehat{BDA}\) = 1800
=> \(\widehat{BDA}\) = 600
Vì tam giác BAD = tam giác FAD = tam giác EBD
nên \(\widehat{FDA}\)=\(\widehat{ADB}\)=\(\widehat{BDE}\)=600 (các góc tương ứng)
Ta có: \(\widehat{FDA}\)+\(\widehat{ADB}\)+\(\widehat{BDE}\)=600+600+600=1800
=> \(\widehat{FDE}\)=1800
hay E,D,F thẳng hàng (đpcm)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
a/ Xét tam giác ABD và tam giác EBD có:
- Cạnh BD chung
- Góc ABD = góc DBE (vì BD là tia phân giác của góc ABE)
- BA = BE (gt)
Do đó tam giác ABD = tam giác EBD (c.g.c)
Suy ra DA = DE (2 cạnh tương ứng)
b/ Từ tam giác ABD = tam giác EBD => Góc A = góc BED (2 góc tương ứng)
Mà góc A = 90o nên góc EBD = 90o