K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔAED có

AB=AE
góc BAD=góc EAD

AD chung

Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBH và ΔDEC có

góc DBH=góc DEC

DB=DE

góc BDH=góc EDC

Do đó: ΔDBH=ΔDEC

c: Ta có: ΔDBH=ΔDEC

nên góc DHB=góc DCE

d: Ta có: AH=AB+BH

AC=AE+EC

mà AB=AE; BH=EC

nên AH=AC

16 tháng 2 2023

Mình cần gấp

 

Xét ΔAFC có AB/BF=AE/EC

nên BE//FC

a: Xét ΔABD và ΔAED có

AB=AE

góc BAD=góc EAD

AD chung

=>ΔABD=ΔAED

=>DB=DE

b: Xét ΔDBF và ΔDEC có

DB=DE

góc DBF=góc DEC

BF=EC

=>ΔDBF=ΔDEC

=>góc BDF=góc EDC

=>góc BDF+góc BDE=180 độ

=>F,D,E thẳng hàng

c: Xét ΔAFC có AB/BF=AE/EC

nên BE//CF

d: Xét ΔABC và ΔAEF có

AB=AE

góc BAC chung

AC=AF

=>ΔABC=ΔAEF

25 tháng 12 2023

Sửa đề: Trên tia đối của tia EM lấy N sao cho EN=EC

a: Xét ΔABE và ΔAME có

AB=AM

\(\widehat{BAE}=\widehat{MAE}\)

AE chung

Do đó: ΔABE=ΔAME

b: Ta có: ΔABE=ΔAME

=>EB=EM

=>E nằm trên đường trung trực của BM(1)

Ta có: AB=AM

=>A nằm trên đường trung trực của BM(2)

Từ (1) và (2) suy ra AE là đường trung trực của BM

=>AE\(\perp\)BM tại I và I là trung điểm của BM

=>IB=IM

c: Xét ΔENB và ΔECM có

EN=EC

\(\widehat{NEB}=\widehat{CEM}\)(hai góc đối đỉnh)

EB=EM

Do đó: ΔENB=ΔECM

d: Ta có: ΔENB=ΔECM

=>\(\widehat{EBN}=\widehat{EMC}\)

mà \(\widehat{EMC}+\widehat{AME}=180^0\)(hai góc kề bù)

và \(\widehat{AME}=\widehat{ABE}\)(ΔAME=ΔABE)

nên \(\widehat{ABE}+\widehat{NBE}=180^0\)

=>A,B,N thẳng hàng

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: \(\widehat{BDA}=\widehat{EDA}\)

hay DA là tia phân giác của góc BDE

b: Xét ΔBDF và ΔEDC có 

BF=EC

\(\widehat{DBF}=\widehat{DEC}\)

BD=ED

Do đó: ΔBDF=ΔEDC

Suy ra: DF=DC

hay D nằm trên đường trung trực của CF(1)

Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE

và BF=EC

nên AF=AC
hay A nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra AD là đường trung trực của CF

hay AD\(\perp\)CF

c: Xét ΔAFC có AB/BF=AE/EC

nên BE//FC