Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBH và ΔDEC có
góc DBH=góc DEC
DB=DE
góc BDH=góc EDC
Do đó: ΔDBH=ΔDEC
c: Ta có: ΔDBH=ΔDEC
nên góc DHB=góc DCE
d: Ta có: AH=AB+BH
AC=AE+EC
mà AB=AE; BH=EC
nên AH=AC
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>DB=DE
b: Xét ΔDBF và ΔDEC có
DB=DE
góc DBF=góc DEC
BF=EC
=>ΔDBF=ΔDEC
=>góc BDF=góc EDC
=>góc BDF+góc BDE=180 độ
=>F,D,E thẳng hàng
c: Xét ΔAFC có AB/BF=AE/EC
nên BE//CF
d: Xét ΔABC và ΔAEF có
AB=AE
góc BAC chung
AC=AF
=>ΔABC=ΔAEF
Sửa đề: Trên tia đối của tia EM lấy N sao cho EN=EC
a: Xét ΔABE và ΔAME có
AB=AM
\(\widehat{BAE}=\widehat{MAE}\)
AE chung
Do đó: ΔABE=ΔAME
b: Ta có: ΔABE=ΔAME
=>EB=EM
=>E nằm trên đường trung trực của BM(1)
Ta có: AB=AM
=>A nằm trên đường trung trực của BM(2)
Từ (1) và (2) suy ra AE là đường trung trực của BM
=>AE\(\perp\)BM tại I và I là trung điểm của BM
=>IB=IM
c: Xét ΔENB và ΔECM có
EN=EC
\(\widehat{NEB}=\widehat{CEM}\)(hai góc đối đỉnh)
EB=EM
Do đó: ΔENB=ΔECM
d: Ta có: ΔENB=ΔECM
=>\(\widehat{EBN}=\widehat{EMC}\)
mà \(\widehat{EMC}+\widehat{AME}=180^0\)(hai góc kề bù)
và \(\widehat{AME}=\widehat{ABE}\)(ΔAME=ΔABE)
nên \(\widehat{ABE}+\widehat{NBE}=180^0\)
=>A,B,N thẳng hàng
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: \(\widehat{BDA}=\widehat{EDA}\)
hay DA là tia phân giác của góc BDE
b: Xét ΔBDF và ΔEDC có
BF=EC
\(\widehat{DBF}=\widehat{DEC}\)
BD=ED
Do đó: ΔBDF=ΔEDC
Suy ra: DF=DC
hay D nằm trên đường trung trực của CF(1)
Ta có: AB+BF=AF
AE+EC=AC
mà AB=AE
và BF=EC
nên AF=AC
hay A nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra AD là đường trung trực của CF
hay AD\(\perp\)CF
c: Xét ΔAFC có AB/BF=AE/EC
nên BE//FC
CÁI ĐỀ TRẬT LẤT
VẼ HÌNH KO RA :v