K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAD có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔBAD cân tại B

Ta có: ΔBAD cân tại B

mà BH là đường cao

nên BH là tia phân giác của góc ABD

15 tháng 8 2017

có 3 cách

cách 1

Cho tam giác ABC vuông tại A,AH là đường cao,Trên tia đối của tia AH lấy điểm D sao cho AD = AH,Gọi E là trung điểm của HC,F là giao điểm của DE và AC,Chứng minh HF cắt CD tại trung điểm của CD,Chứng minh HF = 1/3CD,Gọi I là trung điểm của AH,Chứng minh EI vuông góc AB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

cách 2

Cho tam giác ABC vuông tại A,AH là đường cao,Trên tia đối của tia AH lấy điểm D sao cho AD = AH,Gọi E là trung điểm của HC,F là giao điểm của DE và AC,Chứng minh HF cắt CD tại trung điểm của CD,Chứng minh HF = 1/3CD,Gọi I là trung điểm của AH,Chứng minh EI vuông góc AB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

cách 3

a) vì A trung điểm DH
E trung điểm HC 
=>F là trọng tâm tam giác DHC
=>HF cắt CD tại TĐ K của CD
b) vì F là trọng tâm tam giác HDC nên HF/HK=1/3
mà HK=1/2CD (do tam giác DHC vuông có HK là trung tuyến)
=>HF=1/3 CD

Cho tam giác ABC vuông tại A,AH là đường cao,Trên tia đối của tia AH lấy điểm D sao cho AD = AH,Gọi E là trung điểm của HC,F là giao điểm của DE và AC,Chứng minh HF cắt CD tại trung điểm của CD,Chứng minh HF = 1/3CD,Gọi I là trung điểm của AH,Chứng minh EI vuông góc AB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

k nha

15 tháng 8 2017
Cho mk hỏi một tí làm sao để chèn hình ảnh vào câu trả lời vây

a) Xét ΔABH vuông tại H và ΔDBH vuông tại H có

BH chung

HA=HD(gt)

Do đó: ΔABH=ΔDBH(hai cạnh góc vuông)

Suy ra: \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)

mà tia BH nằm giữa hai tia BA,BD

nên BH là tia phân giác của \(\widehat{ABD}\)(đpcm)

b) Xét ΔACH vuông tại H và ΔDCH vuông tại H có

CH chung

AH=DH(gt)

Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)

Suy ra: CA=CD(hai cạnh tương ứng)

Ta có: ΔABH=ΔDBH(cmt)

nên BA=BD(hai cạnh tương ứng)

Xét ΔABC và ΔDBC có 

BA=BD(cmt)

BC chung

CA=CD(cmt)

Do đó: ΔABC=ΔDBC(c-c-c)

13 tháng 1 2016

hình tự vẽ nha bn

tam giac ADC có CH là đường cao đồng thời là trung tuyến ( H là tđ của AD, đường cao AH)

=> tam giac ADC cân tại C

tam giac ADC cân tại C có CH là đường cao => CH là pg=>góc C1=C2

XÉT tam giac ABC và tam giac DBC có

AC=DC,GÓC C1=C2,BC CẠNH CHUNG

=> tam giac ABC=tam giac DBC (C-G-C)

=> GÓC ABC=GÓC DBC

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD