Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,c: SỬa đề. gó A<góc C
Vì góc A<góc C
mà góc A+góc C=120 độ
nên góc A<góc B<góc C
=>AB>BC
b: Xét ΔBAD có BA=BD và góc ABD=60 độ
nên ΔBAD đều
a: AB=8cm
b: xét ΔABE vuông tại A và ΔDBE vuông tại D có
BE chung
BA=BD
Do đó: ΔABE=ΔDBE
a, ΔABD có BA = BD (gt) và ˆABDABD^ = ˆABCABC^ = 60o60o
⇒ ΔABD đều (đpcm)
b, ΔABD đều ⇒ AB = AD
Xét ΔAHB và ΔAHD có:
AH chung; AB = AD (cmt); HB = HD (H là trung điểm của BD)
⇒ ΔAHB = ΔAHD (c.c.c)
⇒ ˆAHBAHB^ = ˆAHDAHD^ mà 2 góc này kề bù
⇒ ˆAHBAHB^ = ˆAHDAHD^ = 90o90o
⇒ AH ⊥ BD (đpcm)
c, ΔABD đều ⇒ AB = BD = AD = 2cm
⇒ HB = HD = 1cm
⇒ HC = BC - HB = 5 - 1 = 4cm
ΔAHB vuông tại H ⇒ AH = √AB2−HB2AB2−HB2 = √22−1222−12 = √33cm
ΔAHC vuông tại H ⇒ AC = √AH2+HC2AH2+HC2 = √3+423+42 = √1919cm
a) Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Xét ΔBAD cân tại B có \(\widehat{ABD}=60^0\)(gt)
nên ΔBAD đều(Dấu hiệu nhận biết tam giác đều)
b) Ta có: ΔBAD đều(cmt)
mà AH là đường trung tuyến ứng với cạnh BD(gt)
nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)
hay AH\(\perp\)BD(Đpcm)
a: AC=4cm
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
BA=BD
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAMN vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AMN}=\widehat{DMC}\)
Do đó: ΔAMN=ΔDMC
Suy ra: MN=MC
hay ΔMNC cân tại M
a: Xet ΔBAD có BA=BD và góc B=60 độ
nên ΔBAD đều
b: góc CAD=90-60=30 độ=góc C
=>ΔDAC cân tại D