K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2023

Ta có: Vì B=20o, C = 40o nên A bằng 120o

=>ABC là tam giác tù

Vì AD phân giác CAB nên CAD=60o

=>CDA=180-40-60=80o

Vậy CDA=60o

 

17 tháng 1 2023

a) Xét tam giác ABC có : 

     B+C+A=180o (theo định lí tổng 3 góc trong 1 tam giác)

=>20o+40o+A=180o

=>  60o+A      =180o

=>          A      =180o-60o

=>          A      =120o

    Vậy A = 120o

7 tháng 2 2023

a) Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (Định lý tổng ba góc trong một tam giác)

⇔ \(\widehat{A}+65^o+65^o=180^o\)

\(\widehat{A}+130^o=180^o\)

\(\widehat{A}=180^o-130^{o^{ }}\)

\(\widehat{A}=50^o\)

Hay \(\widehat{BAC}=50^o\)

b) Vì \(Am\) // BC (gt)

\(\widehat{CAm}=\widehat{C}\) (vì 2 góc so le trong)

mà \(\widehat{C}=65^o\) (gt)

\(\widehat{CAm}=65^o\)

Vì AC nằm giữa tia AB và Am

\(\widehat{BAC}+\widehat{CAm}=\widehat{BAm}\)

\(50^o+65^o=\widehat{BAm}\)

\(\widehat{BAm}=115^o\)

Ta có \(\widehat{BAm}+\widehat{nAm}=180^o\) (vì 2 góc kề bù)

⇔ \(115^o+\widehat{nAm}=180^o\)

\(\widehat{nAm}=180^o-115^o\)

\(\widehat{nAm}=65^o\)

mà \(\widehat{CAm}=65^o\) (cmt)

\(\widehat{nAm}=\widehat{CAm}=65^o\)

⇔Am là tia phân giác của \(\widehat{nAC}\) (đpcm)

 

13 tháng 7 2019

a) MC=MN+NC=1+4=5cm

vì M là trung điểm BC: BC=MC.2=5.2=10cm

b) NAC=BAC-BAN=80-45=35 độ

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0
6 tháng 1 2019

kìa ai trả lời đi chứ

10 tháng 3 2019

A C B D E M F K

Gọi giao điểm của ED và AM là K.Trên tia đối của MA lấy điểm F sao cho AM=FM.

Xét \(\Delta\)MAB và \(\Delta\)MFC có:

MA=MF,^BMA=^FMC,BM=CM => \(\Delta MAB=\Delta FMC\left(c-g-c\right)\Rightarrow AB=FC=AD,\widehat{ABM}=\widehat{FCM}\)

\(\Rightarrow AB//CF\Rightarrow\widehat{FCA}+\widehat{BAC}=180^0\left(1\right)\)

\(AD\perp AB\Rightarrow\widehat{BAE}+\widehat{EAD}=90^0\)

\(AE\perp AC\Rightarrow\widehat{CAD}+\widehat{EAD}=90^0\)

\(\Rightarrow\widehat{BAE}+\widehat{EAD}+\widehat{CAD}+\widehat{EAD}=180^0\)

\(\Rightarrow\widehat{BAC}+\widehat{EAD}=180^0\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{FCA}=\widehat{EAD}\)

Xét \(\Delta\)ADE và \(\Delta\)CFA có:

AE=AC(gt),^FCA=^EAD(cmt),AD=CF(cmt)

\(\Rightarrow\Delta ADE=\Delta CFA\left(c-g-c\right)\Rightarrow\widehat{AED}=\widehat{CAF}\)

Mặt khác:\(\widehat{CAF}+\widehat{FAF}=90^0\)

\(\Rightarrow\widehat{AED}+\widehat{FAE}=90^0\)

\(\Rightarrow\widehat{EAK}+\widehat{KAE}=90^0\)

\(\Rightarrow\widehat{EKA}=90^0\)

\(\Rightarrow AM\perp DE^{đpcm}\)