Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình
CM: a) Ta có : góc BAD + góc DAC = 900 + góc DAC = góc BAC (1)
Mà góc BAC = 900 + BCA (2)
Từ (1) và (2) suy ra góc DAC = góc DCA
=> t/giác ADC là t/giác cân tại D
Ta lại có: góc BAD + góc DAE = 1800 (kề bù)
=> góc DAE = 1800 - góc BAD = 1800 - 900 = 900
Mà góc CAE = 900 - góc DAC (3)
góc ACE = 900 - góc BCA (4)
Và góc DAC = góc DCA (cmt) (5)
Từ (3);(4);(5) suy ra góc EAC = góc ACE
=> t/giác AEC là t/giác cân tại E
b) Ta có: t/giác ADC cân tại D(cmt) => AD = DC
t/giác AEC cân tại E (Cmt) => EA = EC
Xét t/giác ADE và t/giác CDE
có AE = CE (cmt)
AD = DC (Cmt)
DE :chung
=> t/giác ADE = t/giác CDE (c.c.c)
=> góc ADE = góc EDC (hai góc tương ứng)
Xét t/giác ADN và t/giác CDN
có góc DAN = góc DCN (cm câu a)
DA = DC (Cmt)
góc ADN = góc CDN (cmt)
=> t/giác ADN = t/giác CDN (g.c.g)
=> AN = CN (hai cạnh tương ứng) => N là trung điểm của AC
=> góc DNA = góc DNC (hai góc tương ứng)
Mà góc DNA + góc DNC = 1800 (kề bù)
=> 2 ^DNA = 1800
=> ^DNA = 1800 : 2
=> góc DNA = 900
c) Ta có: góc ADC là góc ngoài của t/giác ADB
=> góc ADC = góc DAB + góc B = 900 + 300 = 1200
Xét t/giác ADC có góc ADC + góc DCA + góc CAD = 1800 (tổng 3 góc của 1 t/giác)
=> 2.^ DCA = 1800 - góc ADC = 1800 - 1200 = 600
=> góc DCA = 600 : 2 = 300
=> góc DCA = góc B = 300
=> t/giác BAC là t/giác cân tại A
a) Xét t/g ABD và t/g HBD có:
AB = BH (gt)
ABD = HBD ( vì BD là phân giác ABC)
BD là cạnh chung
Do đó, t/g ABD = t/g HBD (c.g.c)
=> BAD = BHD = 90o (2 góc tương ứng)
=> DH _|_ BC (đpcm)
b) t/g ABD = t/g HBD (câu a)
=> ADB = HDB (2 góc tương ứng)
Mà ADB + HDB = ADH = 110o
Do đó, ADB = HDB = 110o : 2 = 55o
t/g ABD vuông tại A có: ABD + ADB = 90o
=> ABD + 55o = 90o
=> ABD = 90o - 55o = 35o
k nhé
mình vẽ hình rồi, còn phần chứng minh làm như bạn Trần Hoàng Việt nha!!
a) Ta có : A=900 ; B=300
=> C=180-A-B=180-90-30=60
b) Xét tam giác ACD và MCD ta có :
CD chung (1)
CM=CA (gt)(2)
góc ACD=góc DCM (gt) (3)
Từ (1)(2)(3) =>\(\Delta\)ACD=\(\Delta\)MCD (c.g.c)
c) Ta có :AK//CD; CK//AD => tứ giác ADCK là hình bình hành
=>AK=CD (cặp cạnh tương ứng )
d)Ta có : \(\widehat{BDC}\)=180-30-60:2=1200
\(\widehat{CPA}\)=180-120=60
Do ADCK là hình bình hành nên \(\widehat{CPA}\)=\(\widehat{AKC}\)=\(60^0\)
b: \(\widehat{ACE}+\widehat{ACB}=90^0\)
mà \(\widehat{CAE}=180^0-90^0-\widehat{C}=90^0-\widehat{ACB}\)
nên \(\widehat{CAE}=\widehat{ACE}\)
hay ΔAEC cân tại E
a: \(\widehat{A}+\widehat{C}=180^0-30^0=150^0\)
\(\Leftrightarrow2\cdot\widehat{C}+90^0=150^0\)
\(\Leftrightarrow\widehat{C}=30^0\)
\(\Leftrightarrow\widehat{A}=120^0\)