K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(\widehat{ACE}+\widehat{ACB}=90^0\)

mà \(\widehat{CAE}=180^0-90^0-\widehat{C}=90^0-\widehat{ACB}\)

nên \(\widehat{CAE}=\widehat{ACE}\)

hay ΔAEC cân tại E

a: \(\widehat{A}+\widehat{C}=180^0-30^0=150^0\)

\(\Leftrightarrow2\cdot\widehat{C}+90^0=150^0\)

\(\Leftrightarrow\widehat{C}=30^0\)

\(\Leftrightarrow\widehat{A}=120^0\)

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

5 tháng 2 2019

Tự vẽ hình

CM: a) Ta có : góc BAD + góc DAC = 900 + góc DAC = góc BAC (1)

Mà góc BAC = 900 + BCA (2)

Từ (1) và (2) suy ra góc DAC = góc DCA 

                      => t/giác ADC là t/giác cân tại D

Ta lại có: góc BAD + góc DAE = 1800 (kề bù)

      => góc DAE = 1800 - góc BAD = 1800 - 900 = 900

Mà góc CAE = 900 - góc DAC (3)

     góc ACE = 900 - góc BCA (4)

Và góc DAC = góc DCA (cmt) (5)

Từ (3);(4);(5) suy ra góc EAC = góc ACE

=> t/giác AEC là t/giác cân tại E

b) Ta có: t/giác ADC cân tại D(cmt) => AD = DC

             t/giác AEC cân tại E (Cmt) => EA = EC

Xét t/giác ADE và t/giác CDE

có AE = CE (cmt)

  AD = DC (Cmt)

  DE :chung

=> t/giác ADE = t/giác CDE (c.c.c)

=> góc ADE = góc EDC (hai góc tương ứng)

Xét t/giác ADN và t/giác CDN

có góc DAN = góc DCN (cm câu a)

     DA = DC (Cmt)

   góc ADN = góc CDN (cmt)

=> t/giác ADN = t/giác CDN (g.c.g)

=> AN = CN (hai cạnh tương ứng) => N là trung điểm của AC

=> góc DNA = góc DNC (hai góc tương ứng)

Mà góc DNA + góc DNC = 1800 (kề bù)

=> 2 ^DNA = 1800

=> ^DNA = 180: 2

=> góc DNA = 900

c) Ta có: góc ADC là góc ngoài của t/giác ADB

=> góc ADC = góc DAB + góc B = 900 + 300 = 1200

Xét t/giác ADC có góc ADC + góc DCA + góc CAD = 1800 (tổng 3 góc của 1 t/giác)

=> 2.^ DCA = 1800 - góc ADC = 1800 - 1200 = 600

=> góc DCA = 600 : 2 = 300

=> góc DCA = góc B = 300

=> t/giác BAC là t/giác cân tại A

19 tháng 4 2019

a) Xét t/g ABD và t/g HBD có:

AB = BH (gt)

ABD = HBD ( vì BD là phân giác ABC)

BD là cạnh chung

Do đó, t/g ABD = t/g HBD (c.g.c)

=> BAD = BHD = 90o (2 góc tương ứng)

=> DH _|_ BC (đpcm)

b) t/g ABD = t/g HBD (câu a)

=> ADB = HDB (2 góc tương ứng)

Mà ADB + HDB = ADH = 110o

Do đó, ADB = HDB = 110o : 2 = 55o

t/g ABD vuông tại A có: ABD + ADB = 90o

=> ABD + 55o = 90o

=> ABD = 90o - 55o = 35o

k nhé

19 tháng 4 2019

mình lm nhầm nhé

5 tháng 2 2017

bai2

ve ho tui hinh

20 tháng 2 2017

giúp tôi nữa

11 tháng 7 2017

A C B D M K x y mình vẽ hình rồi, còn phần chứng minh làm như bạn Trần Hoàng Việt nha!!

a) Ta có : A=900 ; B=300

=> C=180-A-B=180-90-30=60

b) Xét tam giác ACD và MCD ta có :

 CD chung (1)

CM=CA (gt)(2)

góc ACD=góc DCM (gt) (3)

Từ (1)(2)(3) =>\(\Delta\)ACD=\(\Delta\)MCD (c.g.c)

c) Ta có :AK//CD; CK//AD => tứ giác ADCK là hình bình hành 

                                       =>AK=CD (cặp cạnh tương ứng )

d)Ta có : \(\widehat{BDC}\)=180-30-60:2=1200

\(\widehat{CPA}\)=180-120=60

Do  ADCK là hình bình hành nên \(\widehat{CPA}\)=\(\widehat{AKC}\)=\(60^0\)