Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc A = 90 độ
suy ra tam giác ABC vuông tại A.
a) Áp dụng địng lý Pytago trong tam giác vuông ABC ta có: AB2 + AC2 = BC2
Mà AB = 40 cm, AC = 30 cm => BC = 50 cm
b)
Tính AH:
Diện tích tam giác ABC có thể được tính theo hai cách: \(\dfrac{1}{2}\)AB.AC hoặc \(\dfrac{1}{2}\)AH.BC
Suy ra: AH.BC = AB.AC
AH = 40.30:50 = 24 (cm).
Tính BH, CH:
Áp dụng định lý Pytago trong hai tam giác vuông AHB và AHC đều vuông tại H ta được:
+ AH2 + BH2 = AB2 => BH = \(\sqrt{\text{30^2 - 24^2}}\) = 18 (cm)
+ AH2 + CH2 = AC2 => CH = \(\sqrt{\text{40^2 - 24^2}}\) = 32
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
Xét tam giác ABC ta có : \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)
=> \(\widehat{ABC}=60^o\)
Xét tam giác BCD ta có \(\widehat{BCD}+\widehat{CBD}+\widehat{BDC}=180^o\)
=> \(\widehat{BCD}=30^o\)
Ta có : \(\widehat{ACD}+\widehat{BCD}=90^o\)=> \(\widehat{ACD}=60^o\)
Xét tam giác CDE có \(\hept{\begin{cases}\widehat{CED}=90^o\\\widehat{DCE}=60^o\end{cases}}\)
=> Tam giác CDE nửa đều => CE = 1/2.CD (1)
Xét tam giác ACD có \(\hept{\begin{cases}\widehat{ADC}=90^o\\\widehat{ACD}=60^o\end{cases}}\)
=> Tam giác ACD nửa đều => CD = 1/2.AC (2)
Từ (1) và (2) => CE = 1/4.AC
=> AE = 3/4.AC => AE = 7,5 ( cm )
Vậy AE = 7,5 cm