K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

mình định chụp rồi gửi cho bạn mà ko được

a: ΔABC vuông tại A có AM là trung tuyến

nên MA=MC=MB

=>góc MAC=góc MCA=góc BAH

b: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

góc EAM+góc AED

=góc AHD+góc MCA

=góc ABC+góc MCA=90 độ

=>AM vuông góc ED

26 tháng 8 2019

Mn vào tcn của con này, https://olm.vn/thanhvien/kimmai123az, PTD/KM ?, nó chuyên đi copy bài của ng khác và câu hỏi tương tự

22 tháng 10 2021

a: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=CM

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

Suy ra: \(\widehat{MAC}=\widehat{BCA}\)

hay \(\widehat{BAH}=\widehat{MAC}\)

a: BC=BH+CH

=2+8

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH

c: ΔHDB vuông tại D 

mà DM là đường trung tuyến

nên DM=HM=MB

\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)

\(=\widehat{EAH}+\widehat{MHD}\)

\(=90^0-\widehat{C}+\widehat{C}=90^0\)

=>DE vuông góc DM

27 tháng 11 2021

a) \(\Delta ABC\)vuông tại A có trung tuyến AM (gt) \(\Rightarrow AM=\frac{BC}{2}\)(1)

Mà M là trung điểm BC nên \(MC=\frac{BC}{2}\)(2)

Từ (1) và (2) \(\Rightarrow AM=CM\left(=\frac{BC}{2}\right)\)\(\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow\widehat{MAC}=\widehat{C}\)

Vì \(\Delta ABC\)vuông tại A nên \(\widehat{B}+\widehat{C}=90^0\Rightarrow\widehat{C}=90^0-\widehat{B}\)(3)

Do AH là đường cao của \(\Delta ABC\)nên \(\Delta ABH\)vuông tại H \(\Rightarrow\widehat{BAH}+\widehat{B}=90^0\Rightarrow\widehat{BAH}=90^0-\widehat{B}\)(4)

Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{BAH}\left(=90^0-\widehat{B}\right)\)

Lại có \(\widehat{MAC}=\widehat{C}\left(cmt\right)\Rightarrow\widehat{BAH}=\widehat{MAC}\)(đpcm)

b) Vì \(HD\perp AB\)tại D(gt) nên HD là đường cao của \(\Delta ABH\)

Xét \(\Delta ABH\)vuông tại H có đường cao HD \(\Rightarrow AH^2=AD.AB\left(htl\right)\)(5)

Chứng minh tương tự, ta có \(AH^2=AE.AC\)(6)

Từ (5) và (6) \(\Rightarrow AD.AB=AE.AC\Rightarrow\frac{AD}{AC}=\frac{AE}{AB}\)

Xét \(\Delta AED\)và \(\Delta ABC\)có \(\frac{AD}{AC}=\frac{AE}{AB}\left(cmt\right);\)\(\widehat{A}\)chung

\(\Rightarrow\Delta AED~\Delta ABC\left(c.g.c\right)\)\(\Rightarrow\widehat{AED}=\widehat{ABC}\)\(\Rightarrow\widehat{AEK}=\widehat{B}\)(hiển nhiên) (7)

Mặt khác \(\widehat{MAC}=\widehat{C}\left(cmt\right)\Rightarrow\widehat{EAK}=\widehat{C}\)(hiển nhiên) (8)

Từ (7) và (8) \(\Rightarrow\widehat{AEK}+\widehat{EAK}=\widehat{B}+\widehat{C}\)

Mà \(\widehat{B}+\widehat{C}=90^0\left(cmt\right)\Rightarrow\widehat{AEK}+\widehat{EAK}=90^0\)

\(\Delta AEK\)có \(\widehat{AEK}+\widehat{EAK}=90^0\left(cmt\right)\Rightarrow\Delta AEK\)vuông tại K \(\Rightarrow AK\perp EK\)tại K

\(\Rightarrow AM\perp DE\)tại K (hiển nhiên) và ta có đpcm.

c) Dễ thấy \(BC=BH+CH=4,5+8=12,5\)
\(\Delta ABC\)vuông tại A, đường cao AH \(\Rightarrow\hept{\begin{cases}AH^2=BH.CH=4,5.8=36\Rightarrow AH=6\\AB^2=BH.BC=4,5.12,5=56,25\Rightarrow AB=7,5\\AC^2=CH.BC=8.12,5=100\Rightarrow AC=10\end{cases}}\)

Và \(AC^2=CH.BC=8.12,5=100\Rightarrow AC=10\)

Dễ thấy tứ giác ADHE là hình chữ nhật \(\Rightarrow AH=DE\), mà \(AH=6\Rightarrow DE=6\)

Lại có \(\Delta AED~\Delta ABC\left(cmt\right)\Rightarrow\frac{AE}{AB}=\frac{AD}{AC}=\frac{DE}{BC}\)(*)

Thay \(AB=7,5;AC=10;BC=12,5;DE=6\)vào (*), ta có: \(\frac{AE}{7,5}=\frac{AD}{10}=\frac{6}{12,5}=\frac{12}{25}\)

\(\Rightarrow\hept{\begin{cases}AE=\frac{12.7,5}{25}=3,6\\AD=\frac{10.12}{25}=4,8\end{cases}}\)

\(\Delta ADE\)vuông tại A, đường cao AK (vì \(AK\perp DE\)tại K theo cmt)

\(\Rightarrow AK.DE=AD.AE\left(htl\right)\)\(\Rightarrow AK=\frac{AD.AE}{DE}=\frac{3,6.4,8}{6}=2,88\)

Vậy AK = 2,88

15 tháng 11 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-37^0=53^0\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB=BC/2

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)

\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)

\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)

Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)

c: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AFE}=\widehat{ABC}\)

\(\widehat{AFE}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>FE vuông góc AM tại K

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(HA^2=AE\cdot AB\)

=>\(AE\cdot6=4,8^2\)

=>\(AE=3,84\left(cm\right)\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)

Xét ΔAEF vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)

=>AK=2,304(cm)